• Media type: E-Article
  • Title: Addressing the diagnostic gap in hypertension through possible interventions and scale-up : a microsimulation study
  • Contributor: Köppel, Lisa [Author]; Dittrich, Sabine [Author]; Brenner Miguel, Sergio Filipe [Author]; Carmona, Sergio [Author]; Ongarello, Stefano [Author]; Vetter, Beatrice [Author]; Cohn, Jennifer Elizabeth [Author]; Bärnighausen, Till [Author]; Geldsetzer, Pascal [Author]; Denkinger, Claudia M. [Author]
  • Published: December 6, 2022
  • Published in: Public Library of Science: PLoS medicine ; 19(2022), 12, Artikel-ID e1004111, Seite 1-14
  • Language: English
  • DOI: 10.1371/journal.pmed.1004111
  • Identifier:
  • Keywords: Blood counts ; Blood pressure ; Cardiovascular disease risk ; Cardiovascular diseases ; Hypertension ; Low and middle income countries ; Low income countries ; Stroke
  • Origination:
  • Footnote:
  • Description: Background Cardiovascular diseases (CVDs) are the leading cause of mortality globally with almost a third of all annual deaths worldwide. Low- and middle-income countries (LMICs) are disproportionately highly affected covering 80% of these deaths. For CVD, hypertension (HTN) is the leading modifiable risk factor. The comparative impact of diagnostic interventions that improve either the accuracy, the reach, or the completion of HTN screening in comparison to the current standard of care has not been estimated. Methods and findings This microsimulation study estimated the impact on HTN-induced morbidity and mortality in LMICs for four different scenarios: (S1) lower HTN diagnostic accuracy; (S2) improved HTN diagnostic accuracy; (S3) better implementation strategies to reach more persons with existing tools; and, lastly, (S4) the wider use of easy-to-use tools, such as validated, automated digital blood pressure measurement devices to enhance screening completion, in comparison to the current standard of care (S0). Our hypothetical population was parametrized using nationally representative, individual-level HPACC data and the global burden of disease data. The prevalence of HTN in the population was 31% out of which 60% remained undiagnosed. We investigated how the alteration of a yearly blood pressure screening event impacts morbidity and mortality in the population over a period of 10 years. The study showed that while improving test accuracy avoids 0.6% of HTN-induced deaths over 10 years (13,856,507 [9,382,742; 17,395,833]), almost 40 million (39,650,363 [31,34,233, 49,298,921], i.e., 12.7% [9.9, 15.8]) of the HTN-induced deaths could be prevented by increasing coverage and completion of a screening event in the same time frame. Doubling the coverage only would still prevent 3,304,212 million ([2,274,664; 4,164,180], 12.1% [8.3, 15.2]) CVD events 10 years after the rollout of the program. Our study is limited by the scarce data available on HTN and CVD from LMICs. We had to pool some parameters across stratification groups, and additional information, such as dietary habits, lifestyle choice, or the blood pressure evolution, could not be considered. Nevertheless, the microsimulation enabled us to include substantial heterogeneity and stochasticity toward the different income groups and personal CVD risk scores in the model. Conclusions While it is important to consider investing in newer diagnostics for blood pressure testing to continuously improve ease of use and accuracy, more emphasis should be placed on screening completion.
  • Access State: Open Access