You can manage bookmarks using lists, please log in to your user account for this.
Media type:
E-Article
Title:
Structural brain network fingerprints of focal dystonia
Contributor:
Chirumamilla, Venkata C.
[Author];
Dresel, Christian
[Author];
Koirala, Nabin
[Author];
Gonzalez-Escamilla, Gabriel
[Author];
Deuschl, Günther
[Author];
Zeuner, Kirsten E.
[Author];
Muthuraman, Muthuraman
[Author];
Groppa, Sergiu
[Author]
Published:
Augsburg University Publication Server (OPUS), 2019
Language:
English
DOI:
https://doi.org/10.1177/1756286419880664
Origination:
Footnote:
Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
Description:
Background Focal dystonias are severe and disabling movement disorders of a still unclear origin. The structural brain networks associated with focal dystonia have not been well characterized. Here, we investigated structural brain network fingerprints in patients with blepharospasm (BSP) compared with those with hemifacial spasm (HFS), and healthy controls (HC). The patients were also examined following treatment with botulinum neurotoxin (BoNT). Methods This study included matched groups of 13 BSP patients, 13 HFS patients, and 13 HC. We measured patients using structural-magnetic resonance imaging (MRI) at baseline and after one month BoNT treatment, at time points of maximal and minimal clinical symptom representation, and HC at baseline. Group regional cross-correlation matrices calculated based on grey matter volume were included in graph-based network analysis. We used these to quantify global network measures of segregation and integration, and also looked at local connectivity properties of different brain regions. Results The networks in patients with BSP were more segregated than in patients with HFS and HC (p < 0.001). BSP patients had increased connectivity in frontal and temporal cortices, including sensorimotor cortex, and reduced connectivity in the cerebellum, relative to both HFS patients and HC (p < 0.05). Compared with HC, HFS patients showed increased connectivity in temporal and parietal cortices and a decreased connectivity in the frontal cortex (p < 0.05). In BSP patients, the connectivity of the frontal cortex diminished after BoNT treatment (p < 0.05). In contrast, HFS patients showed increased connectivity in the temporal cortex and reduced connectivity in cerebellum after BoNT treatment (p < 0.05). Conclusions Our results show that BSP patients display alterations in both segregation and integration in the brain at the network level. The regional differences identified in the sensorimotor cortex and cerebellum of these patients may play a role in the pathophysiology of ...