> Details
Sheridan, Paul O.;
Louis, Petra;
Tsompanidou, Eleni;
Shaw, Sophie;
Harmsen, Hermie J.;
Duncan, Sylvia H.;
Flint, Harry J.;
Walker, Alan W.
Distribution, organization and expression of genes concerned with anaerobic lactate utilization in human intestinal bacteria
Sharing
Reference
management
Direct link
Bookmarks
Remove from
bookmarks
Share this by email
Share this on Twitter
Share this on Facebook
Share this on Whatsapp
- Media type: E-Article
- Title: Distribution, organization and expression of genes concerned with anaerobic lactate utilization in human intestinal bacteria
- Contributor: Sheridan, Paul O.; Louis, Petra; Tsompanidou, Eleni; Shaw, Sophie; Harmsen, Hermie J.; Duncan, Sylvia H.; Flint, Harry J.; Walker, Alan W.
- Published: Microbiology Society, 2022
- Published in: Microbial Genomics
- Extent:
- Language: English
- DOI: 10.1099/mgen.0.000739
- ISSN: 2057-5858
- Keywords: General Medicine
- Abstract: <jats:p>Lactate accumulation in the human gut is linked to a range of deleterious health impacts. However, lactate is consumed and converted to the beneficial short-chain fatty acids butyrate and propionate by indigenous lactate-utilizing bacteria. To better understand the underlying genetic basis for lactate utilization, transcriptomic analyses were performed for two prominent lactate-utilizing species from the human gut, <jats:italic> <jats:named-content content-type="species"> <jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="http://doi.org/10.1601/nm.33224" xlink:type="simple">Anaerobutyricum soehngenii</jats:ext-link> </jats:named-content> </jats:italic> and <jats:italic> <jats:named-content content-type="species"> <jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="http://doi.org/10.1601/nm.4139" xlink:type="simple">Coprococcus catus</jats:ext-link> </jats:named-content> </jats:italic>, during growth on lactate, hexose sugar or hexose plus lactate. In <jats:italic> <jats:named-content content-type="species"> <jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="http://doi.org/10.1601/nm.33224" xlink:type="simple">A. soehngenii</jats:ext-link> </jats:named-content> </jats:italic> L2-7 six genes of the lactate utilization (<jats:italic>lct</jats:italic>) cluster, including NAD-independent <jats:sc>d</jats:sc>-lactate dehydrogenase (<jats:sc>d</jats:sc>-iLDH), were co-ordinately upregulated during growth on equimolar <jats:sc>d</jats:sc>- and <jats:sc>l</jats:sc>-lactate (<jats:sc>dl</jats:sc>-lactate). Upregulated genes included an acyl-CoA dehydrogenase related to butyryl-CoA dehydrogenase, which may play a role in transferring reducing equivalents between reduction of crotonyl-CoA and oxidation of lactate. Genes upregulated in <jats:italic> <jats:named-content content-type="species"> <jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="http://doi.org/10.1601/nm.4139" xlink:type="simple">C. catus</jats:ext-link> </jats:named-content> </jats:italic> GD/7 included a six-gene cluster (<jats:italic>lap</jats:italic>) encoding propionyl CoA-transferase, a putative lactoyl-CoA epimerase, lactoyl-CoA dehydratase and lactate permease, and two unlinked acyl-CoA dehydrogenase genes that are candidates for acryloyl-CoA reductase. A <jats:sc>d</jats:sc>-iLDH homologue in <jats:italic> <jats:named-content content-type="species"> <jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="http://doi.org/10.1601/nm.4139" xlink:type="simple">C. catus</jats:ext-link> </jats:named-content> </jats:italic> is encoded by a separate, partial <jats:italic>lct,</jats:italic> gene cluster, but not upregulated on lactate. While <jats:italic> <jats:named-content content-type="species"> <jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="http://doi.org/10.1601/nm.4139" xlink:type="simple">C. catus</jats:ext-link> </jats:named-content> </jats:italic> converts three mols of <jats:sc>dl</jats:sc>-lactate via the acrylate pathway to two mols propionate and one mol acetate, some of the acetate can be re-used with additional lactate to produce butyrate. A key regulatory difference is that while glucose partially repressed <jats:italic>lct</jats:italic> cluster expression in <jats:italic> <jats:named-content content-type="species"> <jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="http://doi.org/10.1601/nm.33224" xlink:type="simple">A. soehngenii</jats:ext-link> </jats:named-content> </jats:italic>, there was no repression of lactate-utilization genes by fructose in the non-glucose utilizer <jats:italic> <jats:named-content content-type="species"> <jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="http://doi.org/10.1601/nm.4139" xlink:type="simple">C. catus</jats:ext-link> </jats:named-content> </jats:italic>. This suggests that these species could occupy different ecological niches for lactate utilization in the gut, which may be important factors to consider when developing lactate-utilizing bacteria as novel candidate probiotics.</jats:p>
-
Description:
<jats:p>Lactate accumulation in the human gut is linked to a range of deleterious health impacts. However, lactate is consumed and converted to the beneficial short-chain fatty acids butyrate and propionate by indigenous lactate-utilizing bacteria. To better understand the underlying genetic basis for lactate utilization, transcriptomic analyses were performed for two prominent lactate-utilizing species from the human gut, <jats:italic>
<jats:named-content content-type="species">
<jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="http://doi.org/10.1601/nm.33224" xlink:type="simple">Anaerobutyricum soehngenii</jats:ext-link>
</jats:named-content>
</jats:italic> and <jats:italic>
<jats:named-content content-type="species">
<jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="http://doi.org/10.1601/nm.4139" xlink:type="simple">Coprococcus catus</jats:ext-link>
</jats:named-content>
</jats:italic>, during growth on lactate, hexose sugar or hexose plus lactate. In <jats:italic>
<jats:named-content content-type="species">
<jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="http://doi.org/10.1601/nm.33224" xlink:type="simple">A. soehngenii</jats:ext-link>
</jats:named-content>
</jats:italic> L2-7 six genes of the lactate utilization (<jats:italic>lct</jats:italic>) cluster, including NAD-independent <jats:sc>d</jats:sc>-lactate dehydrogenase (<jats:sc>d</jats:sc>-iLDH), were co-ordinately upregulated during growth on equimolar <jats:sc>d</jats:sc>- and <jats:sc>l</jats:sc>-lactate (<jats:sc>dl</jats:sc>-lactate). Upregulated genes included an acyl-CoA dehydrogenase related to butyryl-CoA dehydrogenase, which may play a role in transferring reducing equivalents between reduction of crotonyl-CoA and oxidation of lactate. Genes upregulated in <jats:italic>
<jats:named-content content-type="species">
<jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="http://doi.org/10.1601/nm.4139" xlink:type="simple">C. catus</jats:ext-link>
</jats:named-content>
</jats:italic> GD/7 included a six-gene cluster (<jats:italic>lap</jats:italic>) encoding propionyl CoA-transferase, a putative lactoyl-CoA epimerase, lactoyl-CoA dehydratase and lactate permease, and two unlinked acyl-CoA dehydrogenase genes that are candidates for acryloyl-CoA reductase. A <jats:sc>d</jats:sc>-iLDH homologue in <jats:italic>
<jats:named-content content-type="species">
<jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="http://doi.org/10.1601/nm.4139" xlink:type="simple">C. catus</jats:ext-link>
</jats:named-content>
</jats:italic> is encoded by a separate, partial <jats:italic>lct,</jats:italic> gene cluster, but not upregulated on lactate. While <jats:italic>
<jats:named-content content-type="species">
<jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="http://doi.org/10.1601/nm.4139" xlink:type="simple">C. catus</jats:ext-link>
</jats:named-content>
</jats:italic> converts three mols of <jats:sc>dl</jats:sc>-lactate via the acrylate pathway to two mols propionate and one mol acetate, some of the acetate can be re-used with additional lactate to produce butyrate. A key regulatory difference is that while glucose partially repressed <jats:italic>lct</jats:italic> cluster expression in <jats:italic>
<jats:named-content content-type="species">
<jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="http://doi.org/10.1601/nm.33224" xlink:type="simple">A. soehngenii</jats:ext-link>
</jats:named-content>
</jats:italic>, there was no repression of lactate-utilization genes by fructose in the non-glucose utilizer <jats:italic>
<jats:named-content content-type="species">
<jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="http://doi.org/10.1601/nm.4139" xlink:type="simple">C. catus</jats:ext-link>
</jats:named-content>
</jats:italic>. This suggests that these species could occupy different ecological niches for lactate utilization in the gut, which may be important factors to consider when developing lactate-utilizing bacteria as novel candidate probiotics.</jats:p> - Footnote:
- Access State: Open Access