• Media type: E-Article
  • Title: Pig membrana granulosa cells prevent resumption of meiosis in cattle oocytes
  • Contributor: Kalous, Jaroslav; Sutovsky, Peter; Rimkevicova, Zora; Shioya, Yasuo; Lie, Byong‐Lyul; Motlik, Jan
  • Published: Wiley, 1993
  • Published in: Molecular Reproduction and Development
  • Extent: 58-64
  • Language: English
  • DOI: 10.1002/mrd.1080340110
  • ISSN: 1040-452X; 1098-2795
  • Keywords: Cell Biology ; Developmental Biology ; Genetics
  • Abstract: <jats:title>Abstract</jats:title><jats:p>Membrana granulosa was isolated from healthy large antral follicles of prepubertal or cyclic gilts stimulated with PMSG or PMSG and hCG. Ultrastructural observations revealed that pieces of pig membrana granulosa were associated with the basement membrane. The cattle cumulus‐enclosed oocytes (COC) were placed in the rolled pieces of the pig membrana granulosa (PMG). After 8 and 24 hr of coculture with PMG from prepubertal gilts, only 16% and 21% of oocytes underwent GVBD, respectively. PMG from PMSG‐stimulated cyclic gilts blocked the resumption of meiosis in all COC. The inhibitory effect of heterologous granulosa cells was fully reversible. When COC were initially incubated for 2 and 4 hr, subsequent culture in PMG prevented GVBD in 100% and 36% of oocytes, respectively. This suggests that functional contact between COC and PMG was established during the first 2 hr of coculture. To follow metabolic cooperation between PMG and COC, PMG was prelabeled with <jats:sup>3</jats:sup>H‐uridine and cocultured with COC. Autoradiography on semithin sections revealed the intensive passage of <jats:sup>3</jats:sup>H‐uridine from PMG into the cumulus layer and an oocyte. COC placed in PMG after GVBD (8 and 12 hr of an initial incubation) did not extrude the first polar body. PMG isolated from cyclic gilts after PMSG and hCG stimulation also inhibited GVBD of COC. Since nearly all COC placed in PMG isolated 10 and 12 hr after hCG remained in the GV stage after 24 hr of coculture, the hCG stimulation did not substantially diminish the meiosis inhibiting activity of PMG. During coculture, cattle cumulus cells were closely associated with the basement membrane, but no gap junctions were formed among heterologous granulosa cells. These results suggest that an inhibitory factor secreted by pig granulosa cells is not species specific and it can act in vitro without the mediation of gap junctions. © 1993 Wiley‐Liss, Inc.</jats:p>
  • Description: <jats:title>Abstract</jats:title><jats:p>Membrana granulosa was isolated from healthy large antral follicles of prepubertal or cyclic gilts stimulated with PMSG or PMSG and hCG. Ultrastructural observations revealed that pieces of pig membrana granulosa were associated with the basement membrane. The cattle cumulus‐enclosed oocytes (COC) were placed in the rolled pieces of the pig membrana granulosa (PMG). After 8 and 24 hr of coculture with PMG from prepubertal gilts, only 16% and 21% of oocytes underwent GVBD, respectively. PMG from PMSG‐stimulated cyclic gilts blocked the resumption of meiosis in all COC. The inhibitory effect of heterologous granulosa cells was fully reversible. When COC were initially incubated for 2 and 4 hr, subsequent culture in PMG prevented GVBD in 100% and 36% of oocytes, respectively. This suggests that functional contact between COC and PMG was established during the first 2 hr of coculture. To follow metabolic cooperation between PMG and COC, PMG was prelabeled with <jats:sup>3</jats:sup>H‐uridine and cocultured with COC. Autoradiography on semithin sections revealed the intensive passage of <jats:sup>3</jats:sup>H‐uridine from PMG into the cumulus layer and an oocyte. COC placed in PMG after GVBD (8 and 12 hr of an initial incubation) did not extrude the first polar body. PMG isolated from cyclic gilts after PMSG and hCG stimulation also inhibited GVBD of COC. Since nearly all COC placed in PMG isolated 10 and 12 hr after hCG remained in the GV stage after 24 hr of coculture, the hCG stimulation did not substantially diminish the meiosis inhibiting activity of PMG. During coculture, cattle cumulus cells were closely associated with the basement membrane, but no gap junctions were formed among heterologous granulosa cells. These results suggest that an inhibitory factor secreted by pig granulosa cells is not species specific and it can act in vitro without the mediation of gap junctions. © 1993 Wiley‐Liss, Inc.</jats:p>
  • Footnote: