You can manage bookmarks using lists, please log in to your user account for this.
Media type:
E-Article
Title:
Doubly Robust Estimation with the R Package drgee
Contributor:
Zetterqvist, Johan;
Sjölander, Arvid
Published:
Walter de Gruyter GmbH, 2015
Published in:
Epidemiologic Methods, 4 (2015) 1
Language:
Not determined
DOI:
10.1515/em-2014-0021
ISSN:
2194-9263;
2161-962X
Origination:
Footnote:
Description:
AbstractA common goal of epidemiologic research is to study the association between a certain exposure and a certain outcome, while controlling for important covariates. This is often done by fitting a restricted mean model for the outcome, as in generalized linear models (GLMs) and in generalized estimating equations (GEEs). If the covariates are high-dimensional, then it may be difficult to well specify the model. This is an important concern, since model misspecification may lead to biased estimates. Doubly robust estimation is an estimation technique that offers some protection against model misspecification. It utilizes two models, one for the outcome and one for the exposure, and produces unbiased estimates of the exposure-outcome association if either model is correct, not necessarily both. Despite its obvious appeal, doubly robust estimation is not used on a regular basis in applied epidemiologic research. One reason for this could be the lack of up-to-date software. In this paper we describe a new