• Media type: E-Article
  • Title: An API for Wearable Environments Development and Its Application to mHealth Field †
  • Contributor: Sartori, Fabio
  • Published: MDPI AG, 2020
  • Published in: Sensors
  • Extent: 5970
  • Language: English
  • DOI: 10.3390/s20215970
  • ISSN: 1424-8220
  • Keywords: Electrical and Electronic Engineering ; Biochemistry ; Instrumentation ; Atomic and Molecular Physics, and Optics ; Analytical Chemistry
  • Abstract: <jats:p>Wearable technologies are transforming research in traditional paradigms of software and knowledge engineering. Among them, expert systems have the opportunity to deal with knowledge bases dynamically varying according to real-time data collected by position sensors, movement sensors, etc. However, it is necessary to design and implement opportune architectural solutions to avoid expert systems are responsible for data acquisition and representation. These solutions should be able to collect and store data according to expert systems desiderata, building a homogeneous framework where data reliability and interoperability among data acquisition, data representation and data use levels are guaranteed. To this aim, the wearable environment notion has been introduced to treat all those information sources as components of a larger platform; a middleware has been designed and implemented, namely WEAR-IT, which allows considering each sensor as a source of information that can be dynamically tied to an expert system application running on a smartphone. As an application example, the mHealth domain is considered.</jats:p>
  • Description: <jats:p>Wearable technologies are transforming research in traditional paradigms of software and knowledge engineering. Among them, expert systems have the opportunity to deal with knowledge bases dynamically varying according to real-time data collected by position sensors, movement sensors, etc. However, it is necessary to design and implement opportune architectural solutions to avoid expert systems are responsible for data acquisition and representation. These solutions should be able to collect and store data according to expert systems desiderata, building a homogeneous framework where data reliability and interoperability among data acquisition, data representation and data use levels are guaranteed. To this aim, the wearable environment notion has been introduced to treat all those information sources as components of a larger platform; a middleware has been designed and implemented, namely WEAR-IT, which allows considering each sensor as a source of information that can be dynamically tied to an expert system application running on a smartphone. As an application example, the mHealth domain is considered.</jats:p>
  • Footnote:
  • Access State: Open Access