• Medientyp: E-Artikel
  • Titel: A silicon carbide-based highly transparent passivating contact for crystalline silicon solar cells approaching efficiencies of 24%
  • Beteiligte: Köhler, Malte [VerfasserIn]; Pomaska, Manuel [VerfasserIn]; Li, Shenghao [VerfasserIn]; Eberst, Alexander [VerfasserIn]; Luysberg, Martina [VerfasserIn]; Qiu, Kaifu [VerfasserIn]; Isabella, Olindo [VerfasserIn]; Finger, Friedhelm [VerfasserIn]; Kirchartz, Thomas [VerfasserIn]; Rau, Uwe [VerfasserIn]; Ding, Kaining [VerfasserIn]; Procel, Paul [VerfasserIn]; Santbergen, Rudi [VerfasserIn]; Zamchiy, Alexandr [VerfasserIn]; Macco, Bart [VerfasserIn]; Lambertz, Andreas [VerfasserIn]; Duan, Weiyuan [VerfasserIn]; Cao, Pengfei [VerfasserIn]; Klingebiel, Benjamin [VerfasserIn]
  • Erschienen: Nature Publishing Group, 2021
  • Erschienen in: Nature energy 6, 529–537 (2021). doi:10.1038/s41560-021-00806-9
  • Sprache: Englisch
  • DOI: https://doi.org/10.1038/s41560-021-00806-9
  • ISSN: 2058-7546
  • Entstehung:
  • Anmerkungen: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Beschreibung: A highly transparent passivating contact (TPC) as front contact for crystalline silicon (c-Si) solar cells could in principle combine high conductivity, excellent surface passivation and high optical transparency. However, the simultaneous optimization of these features remains challenging. Here, we present a TPC consisting of a silicon-oxide tunnel layer followed by two layers of hydrogenated nanocrystalline silicon carbide (nc-SiC:H(n)) deposited at different temperatures and a sputtered indium tin oxide (ITO) layer (c-Si(n)/SiO2/nc-SiC:H(n)/ITO). While the wide band gap of nc-SiC:H(n) ensures high optical transparency, the double layer design enables good passivation and high conductivity translating into an improved short-circuit current density (40.87 mA cm−2), fill factor (80.9%) and efficiency of 23.99 ± 0.29% (certified). Additionally, this contact avoids the need for additional hydrogenation or high-temperature postdeposition annealing steps. We investigate the passivation mechanism and working principle of the TPC and provide a loss analysis based on numerical simulations outlining pathways towards conversion efficiencies of 26%.
  • Zugangsstatus: Freier Zugang