Titel:
Entities with quantities : extraction, search, and ranking
Beteiligte:
Ho, Vinh Thinh
[Verfasser:in]
Erschienen:
Saarländische Universitäts- und Landesbibliothek, 2022
Sprache:
Englisch
DOI:
https://doi.org/10.22028/D291-38030
Entstehung:
Anmerkungen:
Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
Beschreibung:
Quantities are more than numeric values. They denote measures of the world’s entities such as heights of buildings, running times of athletes, energy efficiency of car models or energy production of power plants, all expressed in numbers with associated units. Entity-centric search and question answering (QA) are well supported by modern search engines. However, they do not work well when the queries involve quantity filters, such as searching for athletes who ran 200m under 20 seconds or companies with quarterly revenue above $2 Billion. State-of-the-art systems fail to understand the quantities, including the condition (less than, above, etc.), the unit of interest (seconds, dollar, etc.), and the context of the quantity (200m race, quarterly revenue, etc.). QA systems based on structured knowledge bases (KBs) also fail as quantities are poorly covered by state-of-the-art KBs. In this dissertation, we developed new methods to advance the state-of-the-art on quantity knowledge extraction and search. ; Zahlen sind mehr als nur numerische Werte. Sie beschreiben Maße von Entitäten wie die Höhe von Gebäuden, die Laufzeit von Sportlern, die Energieeffizienz von Automodellen oder die Energieerzeugung von Kraftwerken - jeweils ausgedrückt durch Zahlen mit zugehörigen Einheiten. Entitätszentriete Anfragen und direktes Question-Answering werden von Suchmaschinen häufig gut unterstützt. Sie funktionieren jedoch nicht gut, wenn die Fragen Zahlenfilter beinhalten, wie z. B. die Suche nach Sportlern, die 200m unter 20 Sekunden gelaufen sind, oder nach Unternehmen mit einem Quartalsumsatz von über 2 Milliarden US-Dollar. Selbst moderne Systeme schaffen es nicht, Quantitäten, einschließlich der genannten Bedingungen (weniger als, über, etc.), der Maßeinheiten (Sekunden, Dollar, etc.) und des Kontexts (200-Meter-Rennen, Quartalsumsatz usw.), zu verstehen. Auch QA-Systeme, die auf strukturierten Wissensbanken (“Knowledge Bases”, KBs) aufgebaut sind, versagen, da quantitative Eigenschaften von modernen KBs kaum erfasst werden. ...