> Detailanzeige
Hule, Harald;
Müller, Winfried B.
On the compatibility of algebraic equations with extensions
Teilen
Literatur-
verwaltung
Direktlink
Zur
Merkliste
Lösche von
Merkliste
Per Email teilen
Auf Twitter teilen
Auf Facebook teilen
Per Whatsapp teilen
- Medientyp: E-Artikel
- Titel: On the compatibility of algebraic equations with extensions
- Beteiligte: Hule, Harald; Müller, Winfried B.
- Quelle: Journal of the Australian Mathematical Society ; 21 ( 1976 ) S. 381-383
- Erschienen: Cambridge University Press (CUP), 1976
- Sprache: Englisch
- DOI: 10.1017/s1446788700018693
- ISSN: 1446-7887; 1446-8107
- Schlagwörter: General Mathematics
- Zusammenfassung: <jats:title>Abstract</jats:title><jats:p>In this paper we investigate the following problem proposed by Lausch and Nöbauer: Let <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" mimetype="image" xlink:type="simple" xlink:href="S1446788700018693_inline1" /> be a variety of universal algebras, <jats:italic>B</jats:italic> an algebra of <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" mimetype="image" xlink:type="simple" xlink:href="S1446788700018693_inline1" /> and <jats:italic>A</jats:italic> a subalgebra of <jats:italic>B</jats:italic>. If a system of algebraic equations over <jats:italic>A</jats:italic> is solvable in <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" mimetype="image" xlink:type="simple" xlink:href="S1446788700018693_inline1" />, is it then solvable over <jats:italic>B</jats:italic>? We show that the answer is affirmative in certain varieties but negative in the general case.</jats:p>
- Beschreibung: <jats:title>Abstract</jats:title><jats:p>In this paper we investigate the following problem proposed by Lausch and Nöbauer: Let <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" mimetype="image" xlink:type="simple" xlink:href="S1446788700018693_inline1" /> be a variety of universal algebras, <jats:italic>B</jats:italic> an algebra of <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" mimetype="image" xlink:type="simple" xlink:href="S1446788700018693_inline1" /> and <jats:italic>A</jats:italic> a subalgebra of <jats:italic>B</jats:italic>. If a system of algebraic equations over <jats:italic>A</jats:italic> is solvable in <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" mimetype="image" xlink:type="simple" xlink:href="S1446788700018693_inline1" />, is it then solvable over <jats:italic>B</jats:italic>? We show that the answer is affirmative in certain varieties but negative in the general case.</jats:p>