• Medientyp: E-Artikel
  • Titel: Use of Specific Attenuation for Rainfall Measurement at X-Band Radar Wavelengths. Part II: Rainfall Estimates and Comparison with Rain Gauges
  • Beteiligte: Diederich, Malte; Ryzhkov, Alexander; Simmer, Clemens; Zhang, Pengfei; Trömel, Silke
  • Erschienen: American Meteorological Society, 2015
  • Erschienen in: Journal of Hydrometeorology
  • Umfang: 503-516
  • Sprache: Englisch
  • DOI: 10.1175/jhm-d-14-0067.1
  • ISSN: 1525-755X; 1525-7541
  • Schlagwörter: Atmospheric Science
  • Zusammenfassung: <jats:title>Abstract</jats:title> <jats:p>In a series of two papers, rain-rate retrievals based on specific attenuation A at radar X-band wavelength using the R(A) method presented by Ryzhkov et al. are thoroughly investigated. Continuous time series of overlapping measurements from two polarimetric X-band weather radars in Germany during the summers of 2011–13 are used to analyze various aspects of the method, like miscalibration correction, ground clutter contamination, partial beam blockage (PBB), sensitivity to precipitation characteristics, and sensitivity to temperature assumptions in the retrievals. In Part I of the series, the relations inherent to the R(A) method were used to calculate radar reflectivity Z from specific attenuation and it was compared with measured reflectivity to estimate PBB and calibration errors for both radars. In this paper, R(A) rain estimates are compared to R(Z) and R(KDP) retrievals using specific phase shift KDP. PBB and calibration corrections derived in Part I made the R(Z) rainfall estimates almost perfectly consistent. Accumulated over five summer months, rainfall maps showed strong effects of clutter contamination if R(KDP) is used and weaker impact on R(A). These effects could be reduced by processing the phase shift measurements with more resilience toward ground clutter contamination and by substituting problematic R(KDP) or R(A) estimates with R(Z). Hourly and daily accumulations from rain estimators are compared with rain gauge measurements; the results show that R(A) complemented by R(Z) in segments with low total differential phase shift correlates best with gauges and has the lowest bias and RMSE, followed by R(KDP) substituted with R(Z) at rain rates below 8 mm h−1.</jats:p>
  • Beschreibung: <jats:title>Abstract</jats:title>
    <jats:p>In a series of two papers, rain-rate retrievals based on specific attenuation A at radar X-band wavelength using the R(A) method presented by Ryzhkov et al. are thoroughly investigated. Continuous time series of overlapping measurements from two polarimetric X-band weather radars in Germany during the summers of 2011–13 are used to analyze various aspects of the method, like miscalibration correction, ground clutter contamination, partial beam blockage (PBB), sensitivity to precipitation characteristics, and sensitivity to temperature assumptions in the retrievals. In Part I of the series, the relations inherent to the R(A) method were used to calculate radar reflectivity Z from specific attenuation and it was compared with measured reflectivity to estimate PBB and calibration errors for both radars. In this paper, R(A) rain estimates are compared to R(Z) and R(KDP) retrievals using specific phase shift KDP. PBB and calibration corrections derived in Part I made the R(Z) rainfall estimates almost perfectly consistent. Accumulated over five summer months, rainfall maps showed strong effects of clutter contamination if R(KDP) is used and weaker impact on R(A). These effects could be reduced by processing the phase shift measurements with more resilience toward ground clutter contamination and by substituting problematic R(KDP) or R(A) estimates with R(Z). Hourly and daily accumulations from rain estimators are compared with rain gauge measurements; the results show that R(A) complemented by R(Z) in segments with low total differential phase shift correlates best with gauges and has the lowest bias and RMSE, followed by R(KDP) substituted with R(Z) at rain rates below 8 mm h−1.</jats:p>
  • Anmerkungen:
  • Zugangsstatus: Freier Zugang