• Medientyp: E-Artikel
  • Titel: Telmisartan Lowers Elevated Blood Pressure in Psoriatic Mice without Attenuating Vascular Dysfunction and Inflammation
  • Beteiligte: Wild, Johannes; Schüler, Rebecca; Knopp, Tanja; Molitor, Michael; Kossmann, Sabine; Münzel, Thomas; Daiber, Andreas; Waisman, Ari; Wenzel, Philip; Karbach, Susanne Helena
  • Erschienen: MDPI AG, 2019
  • Erschienen in: International Journal of Molecular Sciences
  • Sprache: Englisch
  • DOI: 10.3390/ijms20174261
  • ISSN: 1422-0067
  • Schlagwörter: Inorganic Chemistry ; Organic Chemistry ; Physical and Theoretical Chemistry ; Computer Science Applications ; Spectroscopy ; Molecular Biology ; General Medicine ; Catalysis
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: <jats:p>Background: Psoriasis is hallmarked by vascular dysfunction, arterial hypertension, and an increased risk for cardiovascular diseases. We have shown recently that skin-driven interleukin (IL)-17A expression promotes psoriasis-like disease in mice, and this is associated with vascular inflammation, vascular dysfunction, and hypertension. As an intensive risk-factor reduction is recommended for psoriasis patients, we aimed to elucidate the impact of the angiotensin II receptor type 1 (AT1) antagonist telmisartan in a mouse model of severe psoriasis-like skin disease. Methods and Results: Elevated blood pressure measured by tail-cuff plethysmography in mice with keratinocyte-specific IL-17A overexpression (K14-IL-17Aind/+ mice) was significantly reduced in response to telmisartan. Importantly, vascular dysfunction, as assessed by isometric tension studies of isolated aortic rings, vascular inflammation measured by flow cytometry analysis of CD45+CD11b+ immune cells, as well as the increased peripheral oxidative stress levels assessed by L-012-enhanced chemiluminescence were not attenuated by telmisartan treatment of K14-IL-17Aind/+ mice, nor was the persisting skin inflammation. Conclusion: We provide first evidence for an effective antihypertensive treatment in experimental psoriasis by AT1 blockade, but without any impact on vascular inflammation and dysfunction in our mouse model of severe psoriasis-like skin disease. This suggests that vascular function and inflammation in psoriasis might not be attenuated as long as skin inflammation persists.</jats:p>
  • Zugangsstatus: Freier Zugang