> Detailanzeige
Wang, Feng-Lin;
Wang, Shin-Hwa
A COMPLETE CLASSIFICATION OF BIFURCATION DIAGRAMS OF AP-LAPLACIAN DIRICHLET PROBLEM II. GENERALIZED NONLINEARITIES
Teilen
Literatur-
verwaltung
Direktlink
Zur
Merkliste
Lösche von
Merkliste
Per Email teilen
Auf Twitter teilen
Auf Facebook teilen
Per Whatsapp teilen
- Medientyp: E-Artikel
- Titel: A COMPLETE CLASSIFICATION OF BIFURCATION DIAGRAMS OF AP-LAPLACIAN DIRICHLET PROBLEM II. GENERALIZED NONLINEARITIES
- Beteiligte: Wang, Feng-Lin; Wang, Shin-Hwa
-
Erschienen:
Mathematical Society of the Republic of China, 2012
- Erschienen in: Taiwanese Journal of Mathematics, 16 (2012) 4, Seite 1265-1291
- Sprache: Englisch
- ISSN: 1027-5487; 2224-6851
- Entstehung:
- Anmerkungen:
- Beschreibung: Abstract We study the bifurcation diagrams of classical positive solutionsuwith ‖u‖∞∈ (0, ∞) of thep-Laplacian Dirichlet problem { ( φ p ( u ′ ( x ) ) ) ′ + λ f q , r ( u ( x ) ) = 0 , − 1 < x < 1 , u ( − 1 ) = 0 = u ( 1 ) , wherep> 1,φp (y) = |y| p−2 y, (φp (u′))′ is the one-dimensionalp-Laplacian, λ > 0 is a bifurcation parameter, and f q , r ( u ) = { | 1 − u | q , if 0 < u ≤ 1 , | 1 − u | r , if u > 1 , with positive constantsqandr. We give explicit formulas of bifurcation curves of classical positive solutions on the (λ, ‖u‖∞)-plane. More importantly, for different (p, q, r), we give a complete classification of all bifurcation diagrams. Hence we are able to determine the (exact) multiplicity of classical positive solutions for each (p, q, r, λ). Our results generalize the results of Leeet al.[J. Math. Anal. Appl.,330(2007), 276-290] with nonlinearityfq,r generalized fromq=r> 0 toq, r> 0. 2010Mathematics Subject Classification: 34B18, 35B32. Key words and phrases: Bifurcation diagram, Positive solution, Exact multiplicity,p-Laplacian, Time map.
- Zugangsstatus: Freier Zugang