• Media type: E-Book
  • Title: Laser beam propagation through random media
  • Contributor: Andrews, Larry C. [Author]; Phillips, Ronald L. [Other]
  • Corporation: SPIE ; Society of Photo-optical Instrumentation Engineers
  • imprint: Bellingham, Wash. <1000 20th St. Bellingham WA 98225-6705 USA>: SPIE, 2005
  • Published in: SPIE press monograph ; 152,onl
  • Issue: 2nd ed
  • Extent: 1 online resource (xxiii, 782 p. : ill.)
  • Language: English
  • DOI: 10.1117/3.626196
  • ISBN: 9780819478320
  • Identifier:
  • Keywords: Laserstrahlung > Ausbreitung
  • Reproduction note: Also available in print version
  • Origination:
  • Footnote: "SPIE digital library. - Includes bibliographical references and index
    Includes bibliographical references and index
    Restricted to subscribers or individual electronic text purchasers
    System requirements: Adobe Acrobat Reader
    Mode of access: World Wide Web
  • Description: Since publication of the first edition of this text in 1998, there have been several new, important developments in the theory of beam wave propagation through a random medium, which have been incorporated into this second edition. Also new to this edition are models for the scintillation index under moderate-to-strong irradiance fluctuations; models for aperture averaging based on ABCD ray matrices; beam wander and its effects on scintillation; theory of partial coherence of the source; models of rough targets for ladar applications; phase fluctuations; analysis of other beam shapes; plus expanded analysis of free-space optical communication systems and imaging systems

    10. Propagation through complex paraxial ABCD optical systems -- 10.1. Introduction -- 10.2. Single element optical system -- 10.3. Aperture averaging -- 10.4. Optical systems with several optical elements -- 10.5. Summary and discussion -- 10.6. Worked examples -- Problems -- References

    12. Laser satellite communication systems -- 12.1. Introduction -- 12.2. Atmospheric channels -- 12.3. Background -- 12.4. Second-order statistics -- 12.5. Irradiance statistics: downlink channel -- 12.6. Irradiance statistics: uplink channel -- 12.7. Fade statistics: downlink channels -- 12.8. Fade statistics: uplink channels -- 12.9. Summary and discussion -- 12.10. Worked examples -- Problems -- References

    13. Double-passage problems: laser radar systems -- 13.1. Introduction -- 13.2. Laser radar configuration -- 13.3. Modeling the backscattered wave -- 13.4. Finite smooth target, pt. I -- 13.5. Finite smooth target, pt. II -- 13.6. Finite smooth reflector, pt. III -- 13.7. Unresolved (point) target -- 13.8. Diffuse target -- 13.9. Summary and discussion -- 13.10. Worked examples -- Problems -- References

    14. Imaging systems analysis -- 14.1. Introduction -- 14.2. Coherent imaging systems -- 14.3. Incoherent imaging systems -- 14.4. Laser imaging radar -- 14.5. Zernike polynomials -- 14.6. Summary and discussion -- 14.7. Worked examples -- Problems -- References

    16. Partially coherent beams -- 16.1. Introduction -- 16.2. Basic beam parameters -- 16.3. Mutual coherence function, pt. I -- 16.4. Mutual coherence function, pt. II -- 16.5. Scintillation index, pt. I -- 16.6. Scintillation index, pt. II -- 16.7. FSO communication systems -- 16.8. Ladar model in free space -- 16.9. Ladar model in optical turbulence -- 16.10. Summary and discussion -- 16.11. Worked examples -- Problems -- References

    17. Other beam shapes -- 17.1. Introduction -- 17.2. Beam spreading: higher-order gaussian beams -- 17.3. Annular beam -- 17.4. Other beams -- 17.5. Summary and discussion -- Problems -- References

    18. Pulse propagation -- 18.1. Introduction -- 18.2. Background -- 18.3. Two-frequency mutual coherence function -- 18.4. Four-frequency cross-coherence function -- 18.5. Summary and discussion -- Problems -- References

    2. Random processes and random fields -- 2.1. Introduction -- 2.2. Probabilistic description of random process -- 2.3. Ensemble averages -- 2.4. Time averages and ergodicity -- 2.5. Power spectral density functions -- 2.6. Random fields -- 2.7. Summary and discussion -- 2.8. Worked examples -- problems -- references

    3. Optical turbulence in the atmosphere -- 3.1. Introduction -- 3.2. Kolmogorov theory of turbulence -- 3.3. Power spectrum models for refractive-index fluctuations -- 3.4. Atmospheric temporal statistics -- 3.5. Summary and discussion -- 3.6. Worked examples -- problems -- references

    4. Free-space propagation of gaussian-beam waves -- 4.1. Introduction -- 4.2. Paraxial wave equation -- 4.3. Optical wave models -- 4.4. Diffractive properties of gaussian-beam waves -- 4.5. Geometrical interpretations, Part I -- 4.6. Geometrical interpretations, Part II -- 4.7. Higher-order gaussian-beam modes -- 4.8. Abcd ray-matrix representations -- 4.9. Single element optical system -- 4.10. Summary and discussion -- 4.11. Worked examples -- problems -- references

    5. Classical theory for propagation through random media -- 5.1. Introduction -- 5.2. Stochastic wave equation -- 5.3. Born approximation -- 5.4. Rytov approximation -- 5.5. Linear systems analogy -- 5.6. Rytov approximation for abcd optical systems -- 5.7. Classical distribution models -- 5.8. Other methods of analysis -- 5.9. Extended Rytov theory -- 5.10. Summary and discussion -- 5.11. Worked examples -- problems -- references

    6. Second-order statistics: weak fluctuation theory -- 6.1. Introduction -- 6.2. Basic concepts -- 6.3. Mutual coherence function -- 6.4. Spatial coherence radius -- 6.5. Angle-of-arrival fluctuations -- 6.6. Beam wander -- 6.7. Angular and temporal frequency spectra -- 6.8. Slant paths -- 6.9. Summary and discussion -- 6.10. Worked examples -- problems -- references

    7. Second-order statistics: strong fluctuation theory -- 7.1. Introduction -- 7.2. Parabolic equation method -- 7.3. Extended Huygens-Fresnel principle -- 7.4. Method of effective beam parameters -- 7.5. Summary and discussion -- 7.6. Worked examples -- problems -- references

    8. Fourth-order statistics: weak fluctuation theory -- 8.1. Introduction -- 8.2. Scintillation index -- 8.3. Beam wander and scintillation -- 8.4. Covariance function of irradiance -- 8.5. Temporal spectrum of irradiance -- 8.6. Phase fluctuations -- 8.7. Slant paths -- 8.8. Summary and discussion -- 8.9. Worked examples -- problems -- references

    9. Fourth-order statistics: strong fluctuation theory -- 9.1. Introduction -- 9.2. Modeling optical scintillation -- 9.3. Asymptotic theory -- 9.4. Scintillation theory: plane wave model -- 9.5. Scintillation theory: spherical wave model -- 9.6. Scintillation theory: gaussian-beam wave model -- 9.7. Covariance function of irradiance -- 9.8. Temporal spectrum of irradiance -- 9.9. Distribution models for the irradiance -- 9.10. Gamma-gamma distribution -- 9.11. Summary and discussion -- 9.12. Worked examples -- Problems -- References

    Appendix I. Special functions -- Appendix II. Integral table -- Appendix III. Tables of beam statistics -- Index

    Part III. Related topics. -- 15. Propagation through random phase screens -- 15.1. Introduction -- 15.2. Random phase screen models -- 15.3. Mutual coherence function -- 15.4. Scintillation index and covariance function -- 15.5. Multiple phase screens -- 15.6. Summary and discussion -- Problems -- References

    Part I. Basic theory. 1. Prologue -- 1.1. Introduction -- 1.2. Historical background of light -- 1.3. Optical wave models -- 1.4. Atmospheric effects -- 1.5. Application areas -- 1.6. A brief review of communication systems -- 1.7. Summary and overview of the book -- references

    Part II. Applications. -- 11. Free-space optical communication systems -- 11.1. Introduction -- 11.2. Direct detection optical receivers -- 11.3. Fade statistics, Part i -- 11.4. Fade statistics, Part ii -- 11.5. Spatial diversity receivers -- 11.6. Summary and discussion -- 11.7. Worked examples -- Problems -- References