> Details
Dougherty, Edward R.
[Author]
;
SPIE,
Society of Photo-optical Instrumentation Engineers
Random processes for image and signal processing
Sharing
Reference
management
Direct link
Bookmarks
Remove from
bookmarks
Share this by email
Share this on Twitter
Share this on Facebook
Share this on Whatsapp
- Media type: E-Book
- Title: Random processes for image and signal processing
- Contributor: Dougherty, Edward R. [Author]
- Corporation: SPIE ; Society of Photo-optical Instrumentation Engineers
-
Published:
Bellingham, Wash. <1000 20th St. Bellingham WA 98225-6705 USA>: SPIE, 1999
-
Published in:
SPIE press monograph ; 44,onl
SPIE Press monograph ; PM44 - Extent: 1 online resource (xix, 592 p. : ill.)
- Language: English
- DOI: 10.1117/3.268105
- ISBN: 9780819478450
- Identifier:
- Keywords: Signal processing Statistical methods ; Stochastic processes ; Image processing Statistical methods
- Reproduction note: Also available in print version
- Origination:
-
Footnote:
"SPIE digital library. - Includes bibliographical references (p. 575-581) and index
Includes bibliographical references (p. 575-581) and index
Restricted to subscribers or individual electronic text purchasers
Mode of access: World Wide Web
System requirements: Adobe Acrobat Reader
-
Description:
Part of the SPIE/IEEE Series on Imaging Science and Engineering. This book provides a framework for understanding the ensemble of temporal, spatial, and higher-dimensional processes in science and engineering that vary randomly in observations. Suitable as a text for undergraduate and graduate students with a strong background in probability and as a graduate text in image processing courses
Chapter 1. Probability theory -- Probability space -- Events -- Conditional probability -- Random variables -- Probability distributions -- Probability densities -- Functions of a random variable -- Moments -- Expectation and variance -- Moment-generating function -- Important probability distributions -- Binomial distribution -- Poisson distribution -- Normal distribution -- Gamma distribution -- Beta distribution -- Computer simulation -- Multivariate distributions -- Jointly distributed random variables -- Conditioning -- Independence -- Functions of several random variables -- Basic arithmetic functions of two random variables -- Distributions of sums of independent random variables -- Joint distributions of output random variables -- Expectation of a function of several random variables -- Covariance -- Multivariate normal distribution -- Laws of large numbers -- Weak law of large numbers -- Strong law of large numbers -- Central limit theorem -- Parametric estimation via random samples -- Random-sample estimators -- Sample mean and sample variance -- Minimum-variance unbiased estimators -- Method of moments -- Order statistics -- Maximum-likelihood estimation -- Maximum-likelihood estimators -- Additive noise -- Minimum noise -- Entropy -- Uncertainty -- Information -- Entropy of a random vector -- Source coding -- Prefix codes -- Optimal coding -- Exercises for chapter 1
Chapter 2. Random processes -- Random functions -- Moments of a random function -- Mean and covariance functions -- Mean and covariance of a sum -- Differentiation -- Differentiation of random functions -- Mean-square differentiability -- Integration -- Mean ergodicity -- Poisson process -- One-dimensional Poisson model -- Derivative of the Poisson process -- Properties of Poisson points -- Axiomatic formulation of the Poisson process -- Wiener process and white noise -- White noise -- Random walk -- Wiener process -- Stationarity -- Wide-sense stationarity -- Mean-ergodicity for WS stationary processes -- Covariance-ergodicity for WS stationary processes -- Strict-sense stationarity -- Estimation -- Linear systems -- Communication of a linear operator with expectation -- Representation of linear operators -- Output covariance -- Exercises for chapter 2
Chapter 3. Canonical representation -- Canonical expansions -- Fourier representation and projections -- Expansion of the covariance function -- Karhunen-Loeve expansion -- The Karhunen-Loeve theorem -- Discrete Karhunen-Loeve expansion -- Canonical expansions with orthonormal coordinate functions -- Relation to data compression -- Noncanonical representation -- Generalized Bessel inequality -- Decorrelation -- Trigonometric representation -- Trigonometric Fourier series -- Generalized Fourier coefficients for WS stationary processes -- Mean-square periodic WS stationary processes -- Expansions as transforms -- Orthonormal transforms of random functions -- Fourier descriptors -- Transform coding -- Karhunen-Loeve compression -- Transform compression using arbitrary orthonormal systems -- Walsh-Hadamard transform -- Discrete cosine transform -- Transform coding for digital images -- Optimality of the Karhunen-Loeve transform -- Coefficients generated by linear functionals -- Coefficients from integral functionals -- Generating bi-orthogonal function systems -- Complete function systems -- Canonical expansion of the covariance function -- Canonical expansions from covariance expansions -- Constructing canonical expansions for covariance functions -- Integral canonical expansions -- Construction via integral functional coefficients -- Construction from a covariance expansion -- Power spectral density -- The power-spectral-density/autocorrelation transform pair -- Power spectral density and linear operators -- Integral representation of WS stationary random functions -- Canonical representation of vector random functions -- Vector random functions -- Canonical expansions for vector random functions -- Finite sets of random vectors -- Canonical representation over a discrete set -- Exercises for chapter 3
Chapter 4. Optimal filtering -- Optimal mean-square-error filters -- Conditional expectation -- Optimal nonlinear filter -- Optimal filter for jointly normal random variables -- Multiple observation variables -- Bayesian parametric estimation -- Optimal finite-observation linear filters -- Linear filters and the orthogonality principle -- Design of the optimal linear filter -- Optimal linear filter in the jointly Gaussian case -- Role of wide-sense stationarity -- Signal-plus-noise model -- Edge detection -- Steepest descent -- Steepest descent iterative algorithm -- Convergence of the steepest-descent algorithm -- Least-mean-square adaptive algorithm -- Convergence of the LMS algorithm -- Nonstationary processes -- Least-squares estimation -- Pseudoinverse estimator -- Least-squares estimation for nonwhite noise -- Multiple linear regression -- Least-squares image restoration -- Optimal linear estimation of random vectors -- Optimal linear filter for linearly dependent observations -- Optimal estimation of random vectors -- Optimal linear filters for random vectors -- Recursive linear filters -- Recursive generation of direct sums -- Static recursive optimal linear filtering -- Dynamic recursive optimal linear filtering -- Optimal infinite-observation linear filters -- Wiener-Hopf equation -- Wiener filter -- Optimal linear filter in the context of a linear model -- The linear signal model -- Procedure for finding the optimal linear filter -- Additive white noise -- Discrete domains -- Optimal linear filters via canonical expansions -- Integral decomposition into white noise -- Integral equations involving the autocorrelation function -- Solution via discrete canonical expansions -- Optimal binary filters -- Binary conditional expectation -- Boolean functions and optimal translation-invariant filters -- Optimal increasing filters -- Pattern classification -- Optimal classifiers -- Gaussian maximum-likelihood classification -- Linear discriminants -- Neural networks -- Two-layer neural networks -- Steepest descent for nonquadratic error surfaces -- Sum-of-squares error -- Error back-propagation -- Error back-propagation for multiple outputs -- Adaptive network design -- Exercises for chapter 4
Chapter 5. Random models -- Markov chains -- Chapman-Kolmogorov equations -- Transition probability matrix -- Markov processes -- Steady-state distributions for discrete-time Markov chains -- Long-run behavior of a two-state Markov chain -- Classification of states -- Steady-state and stationary distributions -- Long-run behavior of finite Markov chains -- Long-run behavior of Markov chains with infinite state spaces -- Steady-state distributions for continuous-time Markov chains -- Irreducible continuous-time Markov chains -- Birth-death model-queues -- Forward and backward Kolmogorov equations -- Markov random fields -- Neighborhood systems -- Determination by conditional probabilities -- Gibbs distributions -- Random Boolean model -- Germ-grain model -- Vacancy -- Hitting -- Linear boolean model -- Granulometries -- Openings -- Classification by granulometric moments -- Adaptive reconstructive openings -- Random sets -- Hit-or-miss topology -- Convergence and continuity -- Random closed sets -- Capacity functional -- Exercises for chapter 5 -- Bibliography -- Index