• Media type: E-Book
  • Title: Light harvesting in photosynthesis
  • Contributor: Croce, Roberta [Editor]; Grondelle, Rienk van [Editor]; Amerongen, Herbert van [Editor]; Stokkum, Ivo van [Editor]
  • Published: Boca Raton; London; New York: CRC Press, Taylor & Francis Group, [2018]
  • Published in: Foundations of Biochemistry and Biophysics
  • Extent: 1 Online Ressource
  • Language: English
  • DOI: 10.1201/9781351242899
  • ISBN: 9781482218381; 9781351242899; 9781351242882; 9781351242875; 1351242881; 135124289X; 1351242873; 1482218380
  • Identifier:
  • RVK notation: SK 830 : Statistische Entscheidungstheorie
  • Keywords: Lichtabsorption > Photosynthese
  • Origination:
  • Footnote: Includes bibliographical references
    Owing to Legal Deposit regulations this resource may only be accessed from within National Library of Scotland on library computers. For more information contact enquiriesnls.uk StEdNL
  • Description: Pigments : general properties and biosynthesis / Min Chen and Robert E. Blankenship -- Chlorophylls in a protein environment : how to calculate their spectral and redox properties (from MO to DFT) / Carles Curutchet and Benedetta Mennucci -- Carotenoids : electronic states and biological functions / Harry A. Frank and Bruno Robert -- Light harvesting in higher plants and green algae / Lauren Nicol and Roberta Croce -- Light harvesting in cyanobacteria : the phycobilisomes / Leeat Bar-Eyal, Anat Shperberg-Avni, Yossi Paltiel, Nir Keren, and Noam Adir -- The purple bacterial photosynthetic apparatus / David J. Mothersole, David A. Farmer, Andrew Hitchcock, and C. Neil Hunter -- Light harvesting in green bacteria / Jakub Pšencík and Tomáš Mancal -- Light harvesting complexes in chlorophyll c-containing algae / Claudia Büchel -- Reaction centers : structure and mechanism / Michael R. Jones -- Organization of photosynthetic membrane proteins into supercomplexes / Egbert J. Boekema and Dmitry A. Semchonok -- Photoprotective excess energy dissipation / Alberta Pinnola, Diana Kirilovsky, and Roberto Bassi -- The exciton concept / Leonas Valkunas, Jevgenij Chmeliov, and Herbert van Amerongen -- Modeling of energy transfer in photosynthetic light Harvesting / Vladimir I. Novoderezkin and Rienk van Grondelle -- Quantum aspects of photosynthetic energy transfer / Susana F. Huelga and Martin B. Plenio -- Photoinduced electron transfer in the reaction centers / Thomas Renger -- Modulation of the redox potentials / Fabrice Rappaport -- Basic optical spectroscopy for light harvesting / Arvi Freiberg and Gyozo Garab -- Advanced spectroscopy : ultrafast and 2D / Tomáš Polívka and Donatas Zigmantas -- Experimental evidence of quantum coherence in photosynthetic light harvesting / Jessica M. Anna, Gregory S. Engel, Gregory D. Scholes, and Rienk van Grondelle -- Systems biophysics : global and target analysis of light harvesting and photochemical quenching in vivo / Ivo H.M. van Stokkum -- Light harvesting, photoregulation and photoprotection in selected artificial photosynthetic systems / Katherine WongCarter, Manuel J. Llansola-Portoles, Gerdenis Kodis, Devens Gust, Ana L. Moore and Thomas A. Moore -- Light to useful charge in nanostructured organic and hybrid solar cells / TÖnu Pullerits and Villy SundstrÖm -- Chlorophyll fluorescence as a tool for describing the operation and regulation of photosynthesis in vivo / Jeremy Harbinson -- Harvesting sunlight with cyanobacteria and algae for sustainable production in a bio-based economy / Pascal van Alphen and Klaas J. Hellingwerf.

    Chapter 4: Light harvesting in higher plants and green algae -- 4.1 Introduction -- 4.2 LHC Family of Higher Plants and Green Algae -- 4.3 Systems to characterize LHCs -- 4.4 LHCs of higher plants -- 4.4.1 LHCII -- 4.4.2 Minor antenna complexes -- 4.4.2.1 CP29 (Lhcb4) -- 4.4.2.2 CP26 (Lhcb5) -- 4.4.2.3 CP24 (Lhcb6) -- 4.4.3 LHCI -- 4.5 LHCs in Chlamydomonas reinhardtii -- 4.6 Assembly of the antenna complexes in supercomplexes -- References -- Chapter 5: Light harvesting in cyanobacteria: The phycobilisomes -- 5.1 Structure of the PBS -- 5.2 Energy transfer to reaction centers -- 5.3 Phycobiliproteins in vitro : studies of PC nanowires in bio-hybrid devices -- 5.4 Phycobilisome dynamics -- 5.4.1 State transition -- 5.4.2 Nonphotochemical quenching -- 5.4.3 PBS degradation -- 5.4.4 Chromatic acclimation -- References -- Chapter 6: Photosynthetic apparatus in purple bacteria -- 6.1 Purple phototrophic bacteria -- 6.1.1 Rhodobacter sphaeroides -- 6.1.2 The photosynthetic apparatus in purple phototrophs utilizes light to generate ATP -- 6.2 Components of the bacterial photosynthetic apparatus -- 6.2.1 Peripheral light-harvesting LH2 complex -- 6.2.2 RC–LH1 core complexes -- 6.2.3 The reaction center -- 6.3 Functions of THE photosystem, cytochrome, and ATP synthase components in bacterial photosynthetic membranes -- 6.3.1 Excitation energy transfer within LH1 and LH2 -- 6.3.2 Excitation energy transfer to the reaction center -- 6.3.3 Transduction of excitation energy to electron flow in the reaction center -- 6.3.4 Completion of electron flow through the cytochrome bc1 complex and generation of a proton-motive force -- 6.3.5 Formation of ATP -- 6.4 Organization of the bacterial photosynthetic apparatus -- 6.4.1 Organization of light harvesting and reaction center complexes -- 6.4.2 Organization of the cytochrome bc1 complex

    6.4.3 In silico modeling studies of bacterial membrane vesicles -- 6.5 Assembly of photosystem components of the bacterial photosynthetic apparatus -- 6.5.1 Genetic aspects: The photosynthesis gene cluster in purple phototrophic bacteria -- 6.5.1.1 The puf operon, puhA, and the lhaA gene -- 6.5.1.2 The pucBAC and puc2BA operons -- 6.5.2 Assembly of photosynthetic complexes -- 6.5.2.1 Assembly of the RC–LH1 core complex -- 6.5.2.2 Assembly of the LH2 complex -- 6.6 Ultrastructure and assembly of photosynthetic membranes -- 6.6.1 Intracytoplasmic membrane -- 6.6.2 Changes in membrane organization in response to alterations in light intensity and oxygen -- 6.6.2.1 Effects of light intensity on membranes of Rba. sphaeroides -- 6.6.2.2 Effects of oxygen on membranes of Rba. sphaeroides -- 6.6.3 Maturation of intracytoplasmic membranes from precursor membranes -- References -- Chapter 7: Light harvesting in green bacteria -- 7.1 Introduction -- 7.2 Chlorosome -- 7.2.1 Organization of the chlorosome interior -- 7.2.2 Function of the chlorosome interior -- 7.2.2.1 EET within the chlorosome interior -- 7.2.2.2 EET from the chlorosome interior to the baseplate -- 7.2.2.3 Regulation and protection -- 7.3 Baseplate -- 7.3.1 Organization of the baseplate -- 7.3.2 Function of the baseplate -- 7.4 Intermediate antennas -- 7.4.1 FMO complex of Chlorobi and Acidobacteria -- 7.4.1.1 Organization of the FMO complex -- 7.4.1.2 Function of the FMO complex -- 7.4.1.3 FMO as a model antenna for theoretical and experimental studies -- 7.4.2 Membrane LH complexes of Chloroflexi -- 7.4.2.1 Organization of the membrane LH complexes -- 7.4.2.2 Function of the membrane LH complexes -- 7.5 EET to the reaction centers -- 7.5.1 Type I reaction centers of Chlorobi and Acidobacteria -- 7.5.2 Type II reaction centers of Chloroflexi -- 7.6 Complete LH machinery

    7.6.1 Organization, stoichiometry, and their implications -- 7.6.2 Efficiency of overall EET -- 7.6.3 EET in whole cells -- Acknowledgments -- References -- Chapter 8: Light-harvesting complexes in chlorophyll c–containing algae -- 8.1 Introduction -- 8.2 Light-harvesting systems in the different chlorophyll c–containing algal groups -- 8.2.1 Pigments -- 8.2.2 Overview of the light-harvesting proteins and their genes -- 8.3 Light-harvesting systems of specific groups of Chl c–containing algae -- 8.3.1 Cryptophytes -- 8.3.2 Dinophytes -- 8.3.3 Haptophytes -- 8.3.4 Heterokonts -- 8.3.4.1 Chrysophyceae -- 8.3.4.2 Eustigmatophyceae -- 8.3.4.3 Xanthophyceae -- 8.3.4.4 Phaeophyceae (brown algae) -- 8.3.4.5 Bacillariophyceae (diatoms) -- 8.3.4.6 Other heterokonts -- 8.3.5 Chromerida -- 8.4 Conclusions -- References -- Chapter 9: Reaction centers: Structure and mechanism -- 9.1 Introduction: Reaction centers -- 9.2 Structures of the charge-separating chains -- 9.2.1 The purple bacterial reaction center -- 9.2.2 Photosystem II RC -- 9.2.3 Photosystem I RC -- 9.3 Mechanisms of photochemical charge separation -- 9.3.1 General principles -- 9.3.2 Charge separation in the pbRC -- 9.3.3 Other fast energy and electron transfer events in the pbRC -- 9.3.4 Charge separation in PSII -- 9.3.5 Charge separation in PSI -- 9.4 Variations on a theme -- 9.4.1 The atypical paradigm -- 9.4.2 Source of the atypical paradigm: The needs of the primary energy acceptor -- 9.4.3 Extreme high-potential photochemistry: PSII -- 9.4.4 Extreme low-potential photochemistry: PSI -- 9.4.5 What about P865, P840, P798, and the other P840? -- 9.5 Summary and outlook -- References -- Chapter 10: Organization of photosynthetic membrane proteins into supercomplexes -- 10.1 Introduction -- 10.1.1 Organization of photosystems I and II in Supercomplexes -- 10.2 Photosystem I supercomplexes

    10.2.1 Supercomplexes in cyanobacteria -- 10.2.2 Green plant PSI complex with four Lhca antenna proteins -- 10.2.3 Supercomplexes with cytochrome b6f and NDH -- 10.2.4 PSI supercomplexes of eukaryotic algae -- 10.3 PSII supercomplexes -- 10.3.1 Plant PSII supercomplexes -- 10.3.2 PSII supercomplexes lacking CP24 -- 10.3.3 Toward higher resolution -- 10.3.4 Arrangement of supercomplexes in megacomplexes -- References -- Chapter 11: Photoprotective excess energy dissipation -- 11.1 Summary -- 11.2 Introduction: All oxygenic photosynthetic organisms exhibit NPQ activity -- 11.2.1 How to detect and measure NPQ -- 11.2.1.1 Pulse amplitude modulated fluorometry measurements -- 11.2.1.2 Fluorescence lifetime measurements -- 11.2.1.3 Low-temperature fluorescence spectroscopy -- 11.3 NPQ in prokaryotes -- 11.4 NPQ in eukaryotes -- 11.4.1 Eukaryotic NPQ is a feedback response -- 11.4.1.1 LHCSR is responsible for NPQ activity in lower plants and algae -- 11.4.1.1.1 LHCSR proteins -- 11.4.1.1.2 Additional factors involved in LHCSR-dependent NPQ: Carotenoids and Lhcb subunits -- 11.4.1.2 NPQ activity in vascular plants is catalyzed by PSBS -- 11.4.1.2.1 Properties of the PSBS protein -- 11.4.1.2.2 Additional factors involved in PSBS-dependent quenching: Carotenoids and Lhcb subunits -- 11.4.1.2.3 Mechanism of PSBS activity: Modulation of thylakoid structural organization -- 11.4.1.3 PSBS- versus LHCSR-dependent NPQ: Differences and similarities -- 11.4.1.3.1 Toward a molecular model for excess energy dissipation in eukaryotes -- 11.4.1.3.2 On the physical mechanism(s) of quenching reactions -- 11.5 Concluding remarks: Why did NPQ triggering evolve from LHCSR to PSBS? -- Acknowledgments -- References -- Part 3: Light-Harvesting Systems in Action: Energy transfer and electron transport -- Chapter 12: The exciton concept -- 12.1 Introduction

    12.2 Individual chromophores