• Media type: E-Book; Thesis
  • Title: In-situ-Messung und Simulation der Flüssigphasensilicierung
  • Contributor: Hofbauer, Peter J. [Author]; Rädlein, Edda [Degree supervisor]; Raether, Friedrich [Degree supervisor]; Schaaf, Peter [Degree supervisor]
  • Corporation: Technische Universität Ilmenau ; Universitätsverlag Ilmenau
  • Published: Ilmenau: Universitätsverlag Ilmenau, 2020
    Ilmenau: Universitätsbibliothek, 2020
  • Published in: Werkstofftechnik aktuell ; 21
  • Extent: 1 Online-Ressource (xv, 295 Seiten); Diagramme, Illustrationen
  • Language: German
  • DOI: 10.22032/dbt.45029
  • Identifier:
  • Keywords: Flüssigphasentechnik > Kohlenstofffaserverstärkter Kohlenstoffwerkstoff > Faserverstärkte Keramik > Poröser Stoff
  • Origination:
  • University thesis: Dissertation, Technische Universität Ilmenau, 2020
  • Footnote:
  • Description: Die Flüssigphaseninfiltration von porösen Kohlenstoffvorformen mit Silicium, im Allgemeinen als Liquid Silicon Infiltration (LSI) bezeichnet, ist eine der wirtschaftlichsten Technologien zur Herstellung von kohlenstofffaserverstärktem Siliciumcarbid (C/SiC). Trotz jahrzehntelanger Forschung sind die physikalischen Phänomene an der Infiltrationsfront noch nicht hinreichend verstanden worden. Folglich existiert bislang kein mechanistisches Modell, das helfen würde, den Produktionsprozess von C/SiC-Bauteilen zu optimieren. Die vorliegende Arbeit dient dazu, die Forschungslücken zu schließen und ein validiertes Simulationsmodell zur Prozessoptimierung zur Verfügung zu stellen. Inhaltlich wurde die Arbeit in drei Teile gegliedert, wobei sich der erste Teil zunächst mit den Herstellverfahren von C/SiC-Komponenten befasst. Anschließend werden die grundlegenden chemischen und physikalischen Vorgänge der Reaktion von Silicium und Kohlenstoff zu Siliciumcarbid erläutert. Gefolgt von dem bisherigen Verständnis der Infiltration von porösen, kohlenstofffaserverstärkten Kohlenstoffvorformen (C/C-Preforms) mit flüssigem Silicium, wird der Stand der Technik mit den bisweilen existierenden Infiltrations-und Diffusionsmodellen abgehandelt. Der zweite Teil befasst sich mit einem neu entwickelten Versuchsaufbau zur Untersuchung des LSI-Prozesses. Dieser ermöglicht eine In-situ-Beobachtung während der Infiltration einer Spaltkapillare aus Glaskohlenstoff mit Silicium. Ursprünglich war der Versuchsaufbau zur Validierung der bisher anerkannten Infiltrationsmodelle angedacht, die auf der allgemeinen Kapillartheorie beruhen. Allerdings zeigten die Versuche, dass sich die Infiltrationskinetik grundlegend von dem Verhalten unterscheidet, dass durch die bekannten Infiltrationsmodelle vorhergesagt wird. Weitere Untersuchungen führten zu neuen Erkenntnissen, die den Aufbau eines mesoskopischen Modells zur Vorhersage des tatsächlichen Infiltrationsverhaltens ermöglichten. Mit der Infiltration und Untersuchung von porösen C/C-Materialien, wird der Anwendungsbereich des Infiltrationsmodells auf kommerzielle C/C-Materialien erweitert. Der dritte und letzte Teil behandelt den Aufbau eines numerischen Modells zur Simulation des LSI-Prozesses. Erstmals wurde die reaktive Infiltration von porösen C/C-Preforms im Dreidimensionalen simuliert und das Modell mit In-situ-Messungen validiert. Eine neu entwickelte Infiltrationsgleichung und die Einführung eines zeitabhängigen Diffusionskoeffizienten führten zu einer guten Übereinstimmung von Simulations-und Messergebnisse sowie zu kurzen Rechenzeiten auch für komplexe Bauteile im Industriemaßstab.
  • Access State: Open Access