• Media type: E-Article
  • Title: Synthesis and characterization of citrate-stabilized gold-coated superparamagnetic iron oxide nanoparticles for biomedical applications
  • Contributor: Stein, René [Author]; Friedrich, Bernhard [Author]; Mühlberger, Marina [Author]; Cebulla, Nadine [Author]; Schreiber, Eveline [Author]; Tietze, Rainer [Author]; Cicha, Iwona [Author]; Alexiou, Christoph [Author]; Dutz, Silvio [Author]; Boccaccini, Aldo R. [Author]; Unterweger, Harald [Author]
  • Published: 2020
  • Published in: Molecules ; 25(2020), 19, Artikel-ID 4425
  • Language: English
  • DOI: 10.3390/molecules25194425
  • Identifier:
  • Origination:
  • Footnote:
  • Description: Surface-functionalized gold-coated superparamagnetic iron oxide nanoparticles (Au-SPIONs) may be a useful tool in various biomedical applications. To obtain Au-SPIONs, gold salt was precipitated onto citrate-stabilized SPIONs (Cit-SPIONs) using a simple, aqueous one-pot technique inspired by the Turkevich method of gold nanoparticle synthesis. By the further stabilization of the Au-SPION surface with additional citrate (Cit-Au-SPIONs), controllable and reproducible Z-averages enhanced long-term dispersion stability and moderate dispersion pH values were achieved. The citrate concentration of the reaction solution and the gold/iron ratio was found to have a major influence on the particle characteristics. While the gold-coating reduced the saturation magnetization to 40.7% in comparison to pure Cit-SPIONs, the superparamagnetic behavior of Cit-Au-SPIONs was maintained. The formation of nanosized gold on the SPION surface was confirmed by X-ray diffraction measurements. Cit-Au-SPION concentrations of up to 100 [my]g Fe/mL for 48 h had no cytotoxic effect on Jurkat cells. At a particle concentration of 100 [my]g Fe/mL, Jurkat cells were found to take up Cit-Au-SPIONs after 24 h of incubation. A significantly higher attachment of thiol-containing L-cysteine to the particle surface was observed for Cit-Au-SPIONs (53%) in comparison to pure Cit-SPIONs (7%).
  • Access State: Open Access
  • Rights information: Attribution (CC BY)