Theilen, Elin
[Author]
;
Rung, Thomas
[Degree supervisor];
Düster, Alexander
[Degree supervisor]Technische Universität Hamburg,
Technische Universität Hamburg Institut für Fluiddynamik und Schiffstheorie
Numerical modelling of multi-body hydrodynamics in multi-phase simulations
University thesis:
Dissertation, Technische Universität Hamburg-Harburg, Institut für Fluiddynamik und Schiffstheorie M-8, 2020
Footnote:
Sonstige Körperschaft: Technische Universität Hamburg, Institut für Fluiddynamik und Schiffstheorie
In: Schriftenreihe Schiffbau (721): (2020)
Description:
Die vorliegende Arbeit beschäftigt sich mit der Simulation von mechanisch gekoppelten Körpern in einem mehrphasigen Strömungsgebiet. Im Fokus steht die Erweiterung eines viskosen Fluid-Boden-Lösers mit der Overset-Grid-Technik durch geeignete mechanische Modelle zur Analyse der Hydrodynamik komplexer gekoppelter Systeme. Ein quaternionenbasiertes Bewegungsmodell mit grundlegenden mechanischen Kopplungselementen wird verwendet, um deren Einfluss in einem Mehrkörpersystem zu modellieren. Implizite Seegangs-Randbedingungen ermöglichen die Verwendung kompakter Rechengitter und variabler Welleneinfallswinkel. Simulationen mit Berücksichtigung der Struktur-Meerboden-Interaktion wurden unter Verwendung aller numerischen Methoden analysiert.
This thesis is concerned with the simulation of mechanically coupled bodies in a multi-phase environment. While the applications of such cases are very wide, they are of particular interest for offshore wind parks, where numerical investigations can support the safety margins of an operation. The computational focus of the present study is to supplement a viscous three-phase fluid-soil solver featuring the overset grids technique by appropriate mechanical models to analyse the hydrodynamics of complex systems composed of multiple mechanically coupled bodies. A quaternion-based motion modeller featuring several basic joint elements is used to model their influence in a multi-body arrangement or the mechanical interaction between different moving parts of a structure, which can be seen as a multi-body system. Implicit seaway boundary conditions allow the use of compact domain sizes and variable headings of incident waves. Validation examples included refer to rigid links, ropes, fenders or guide frames restricting the motion in experiments, which aim to illustrate the predictive capabilities of the procedure. Finally, investigations on the simulation of a floating tug in waves, boatlanding for safe transfer, grounding of gravity foundations for wind turbines and the installation process of jack-up rigs in seaway involving structure-seabed interactions has been considered for application purposes while utilizing all features of the computational framework.