• Media type: E-Article
  • Title: Debiased/double machine learning for instrumental variable quantile regressions
  • Contributor: Chen, Jau-er [Author]; Huang, Chien-Hsun [Author]; Tien, Jia-Jyun [Author]
  • Published: 2021
  • Published in: Econometrics ; 9(2021), 2 vom: Juni, Artikel-ID 15, Seite 1-18
  • Language: English
  • DOI: 10.3390/econometrics9020015
  • Identifier:
  • Keywords: double machine learning ; instrumental variable ; lasso ; quantile regression ; quantile treatment effect ; Aufsatz in Zeitschrift
  • Origination:
  • Footnote:
  • Description: In this study, we investigate the estimation and inference on a low-dimensional causal parameter in the presence of high-dimensional controls in an instrumental variable quantile regression. Our proposed econometric procedure builds on the Neyman-type orthogonal moment conditions of a previous study (Chernozhukov et al. 2018) and is thus relatively insensitive to the estimation of the nuisance parameters. The Monte Carlo experiments show that the estimator copes well with high-dimensional controls. We also apply the procedure to empirically reinvestigate the quantile treatment effect of 401(k) participation on accumulated wealth.
  • Access State: Open Access
  • Rights information: Attribution (CC BY)