• Media type: E-Book
  • Title: Detecting Misspecifications in Autoregressive Conditional Duration Models
  • Contributor: Hong, Yongmiao [Author]; Lee, Yoon-Jin [Other]
  • Published: [S.l.]: SSRN, [2007]
  • Published in: CAEPR Working Paper ; No. 2007-019
  • Extent: 1 Online-Ressource (33 p)
  • Language: Not determined
  • DOI: 10.2139/ssrn.1017344
  • Identifier:
  • Origination:
  • Footnote: Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments September 26, 2007 erstellt
  • Description: We propose a new class of specification tests for Autoregressive Conditional Duration (ACD) models. Both linear and nonlinear ACD models are covered, and standardized innovations can have time-varying conditional dispersion and higher order conditional moments of unknown form. No specific estimation method is required, and the tests have a convenient null asymptotic N(0,1) distribution. To reduce the impact of parameter estimation uncertainty in finite samples, we adopt Wooldridge's (1990a) device to our context and justify its validity. Simulation studies show that the finite sample correction gives better sizes in finite samples and are robust to parameter estimation uncertainty. And, it is important to take into account time-varying conditional dispersion and higher order conditional moments in standardized innovations; failure to do so can cause strong overrejection of a correctly specified ACD model. The proposed tests have reasonable power against a variety of popular linear and nonlinear ACD alternatives
  • Access State: Open Access