• Media type: E-Book
  • Title: The Macroeconomy as a Random Forest
  • Contributor: Goulet Coulombe, Philippe [Author]
  • Published: [S.l.]: SSRN, [2020]
  • Extent: 1 Online-Ressource (77 p)
  • Language: English
  • DOI: 10.2139/ssrn.3633110
  • Identifier:
  • Origination:
  • Footnote: Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments June 22, 2020 erstellt
  • Description: I develop Macroeconomic Random Forest (MRF), an algorithm adapting the canonical Machine Learning (ML) tool to flexibly model evolving parameters in a linear macro equation. Its main output, Generalized Time-Varying Parameters (GTVPs), is a versatile device nesting many popular nonlinearities (threshold/switching, smooth transition, structural breaks/change) and allowing for sophisticated new ones. The approach delivers clear forecasting gains over numerous alternatives, predicts the 2008 drastic rise in unemployment, and performs well for inflation. Unlike most ML-based methods, MRF is directly interpretable — via its GTVPs. For instance, the successful unemployment forecast is due to the influence of forward-looking variables (e.g., term spreads, housing starts) nearly doubling before every recession. Interestingly, the Phillips curve has indeed flattened, and its might is highly cyclical
  • Access State: Open Access