• Media type: E-Book
  • Title: Counterfactual Estimation in Semiparametric Discrete-Choice Models
  • Contributor: Chiong, Khai [Author]; Hsieh, Yu-Wei [Other]; Shum, Matthew [Other]
  • Published: [S.l.]: SSRN, [2017]
  • Extent: 1 Online-Ressource (19 p)
  • Language: English
  • DOI: 10.2139/ssrn.2979446
  • Identifier:
  • Origination:
  • Footnote: Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments June 2, 2017 erstellt
  • Description: We show how to construct bounds on counterfactual choice probabilities in semiparametric discrete-choice models. Our procedure is based on cyclic monotonicity, a convex-analytic property of the random utility discrete-choice model. These bounds are useful for typical counterfactual exercises in aggregate discrete-choice demand models. In our semiparametric approach, we do not specify the parametric distribution for the utility shocks, thus accommodating a wide variety of substitution patterns among alternatives. Computation of the counterfactual bounds is a tractable linear programming problem. We illustrate our approach in a series of Monte Carlo simulations and an empirical application using scanner data
  • Access State: Open Access