• Media type: E-Book
  • Title: Granger Causality and Regime Inference in Bayesian Markov-Switching VARs
  • Contributor: Droumaguet, Matthieu [Author]; Warne, Anders [Other]; Wozniak, Tomasz [Other]
  • Published: [S.l.]: SSRN, [2015]
  • Published in: ECB Working Paper ; No. 1794
  • Extent: 1 Online-Ressource (52 p)
  • Language: English
  • DOI: 10.2139/ssrn.2621511
  • Identifier:
  • Origination:
  • Footnote: Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments June 22, 2015 erstellt
  • Description: We derive restrictions for Granger noncausality in Markov-switching vector autoregressive models and also show under which conditions a variable does not affect the forecast of the hidden Markov process. Based on Bayesian approach to evaluating the hypotheses, the computational tools for posterior inference include a novel block Metropolis-Hastings sampling algorithm for the estimation of the restricted models. We analyze a system of monthly US data on money and income. The test results in MS-VARs contradict those in linear VARs: the money aggregate M1 is useful for forecasting income and for predicting the next period's state
  • Access State: Open Access