Footnote:
In: Review of Quantitative Finance and Accounting, Forthcoming
Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments September 1, 2012 erstellt
Description:
We propose a methodology to calibrate the local volatility function under a continuous time setting. For this purpose, we used the Markov chain approximation method built on the well-established idea of local consistency. The chain was designed to approximate jump-diffusions coupled with a local volatility function. We found that this method outperforms traditional numerical algorithms that require time discretization. Furthermore, we showed that a local volatility jump-diffusion model outperformed the in- and out-of-sample pricing that the market practitioners benchmark, namely the Practitioners Black-Scholes, in turbulent periods during which at-the-money implied volatilities have risen substantially. As in previous literature concerning local volatility estimation, we represent the local volatility function using a space-time cubic spline