• Media type: E-Book
  • Title: The role of autophagy on targeted therapy in lung adenocarcinoma : in vitro and in vivo models
  • Contributor: Li, Yuanyuan [Author]
  • Published: [Erscheinungsort nicht ermittelbar]: The University of Hong Kong (Pokfulam, Hong Kong), 2015
  • Language: English
  • DOI: 10.5353/th_b5387981
  • Identifier:
  • Origination:
  • University thesis: Dissertation, The University of Hong Kong (Pokfulam, Hong Kong), 2015
  • Footnote:
  • Description: Non-small cell lung cancer (NSCLC) causes most of the cancer deaths worldwide. Tyrosine kinase inhibitors (TKIs), like erlotinib and crizotinib, are commonly used as specific treatments targeting epidermal growth factor receptor (EGFR)-mutated and anaplastic lymphoma kinase (ALK)-rearranged NSCLC. Autophagy is a highly conserved cellular process in response to stress. Tumor microenvironment (TME) is composed of both tumor cells and stromal cells. This study aimed to investigate whether autophagy could confer intrinsic and acquired resistance to TKIs in NSCLC, and its role in the presence of TME or in animal models. In the first part of this study, the effect of EGFR TKI or ALK TKI on sensitive NSCLC cells to generate autophagy was investigated, and manipulation of autophagy in these cell lines was performed. Autophagy inhibition was shown to enhance apoptotic effect of TKIs in sensitive NSCLC cells. This part provided strong evidence that TKIs and autophagy inhibitor chloroquine (CQ) work synergistically in sensitive NSCLC cells. Autophagy induction by erlotinib treatment was observed in a HCC827 (lung adenocarcinoma, EGFR exon 19 del) xenograft model, which was in line with the in vitro observation. Correspondingly, the combination of erlotinib (12.5 mg/kg) with CQ (50 mg/kg) in the HCC827 xenograft model achieved greater tumor growth suppression, compared with single drug treatments. In the second part of this study, a model of TME was established to allow study of autophagy under such circumstances. An activated TME with cytokine production, autophagy induction and epithelial-to-mesenchymal transition (EMT) was generated by co-culturing NSCLC cells and human fibroblasts. Sensitivity to TKI under TME was not affected, and combination of chloroquine with TKI under TME remained synergistic compared with single treatments. In the third part of this study, erlotinib-resistant (ER) HCC827 cells were acquired by stepwise exposure to increasing concentrations of erlotinib in cell culture. Common acquired resistance mechanisms to EGFR TKI (EGFR T790M or c-MET amplification) were excluded in this ER HCC827 model, except EMT. Autophagy status in ER HCC827 cells was studied and autophagy manipulation was performed. It was found that CQ and erlotinib worked synergistically to induce cell death even in ER HCC827 cells. In an ER HCC827 xenograft model, significant degree of autophagy and EMT was evident. Interestingly, combining erlotinib (25 mg/kg) with CQ (50 mg/kg) showed better inhibitory effect on tumor growth compared with single treatments. In summary, TKIs induced both apoptosis and autophagy in EGFR-mutated and ALK-rearranged NSCLC cells. Autophagy inhibition by CQ enhanced TKI-induced cell death in sensitive cells. The presence of TME did not confer TKI resistance. Autophagy was highly activated in EGFR-mutated NSCLC cells with acquired resistance to erlotinib. Combination of CQ with erlotinib remained synergistic in the presence of TME and acquired resistance, both in vitro and in vivo. ; published_or_final_version ; Medicine ; Doctoral ; Doctor of Philosophy
  • Access State: Open Access