Published:
[Erscheinungsort nicht ermittelbar]: Institut des Hautes Études Scientifiques (IHÉS), 2021
Published in:Combinatorics and Arithmetic for Physics (CAP7 20) ; (Jan. 2021)
Extent:
1 Online-Ressource (116 MB, 00:56:30:19)
Language:
English
DOI:
10.5446/51297
Identifier:
Origination:
Footnote:
Audiovisuelles Material
Description:
After a brief introductory account, I’ll explain how a quasi-shuffle compatible definition (by no means unique) of multiple zeta values can be given for integer arguments of any sign, through Connes-Kreimer’s Hopf-algebraic renormalization. Finally, I’ll introduce the Ohno-Okuda-Zudilin model of q-analogues for multiple zeta values, describe the algebraic structure which governs it, and explain how it could open a way to the more delicate renormalization of shuffle relations