• Media type: E-Book; Video
  • Title: On Multiple zeta values and their q-analogues
  • Contributor: Manchon, Dominique [Author]; Duchamp, Gérard Henry Edmond (Organiser) [Other]; Kontsevich, Maxim (Organiser) [Other]; Koshevoy, Gleb (Organiser) [Other]; Ngoc Minh, Hoang Vincel (Organiser) [Other]
  • Published: [Erscheinungsort nicht ermittelbar]: Institut des Hautes Études Scientifiques (IHÉS), 2021
  • Published in: Combinatorics and Arithmetic for Physics (CAP7 20) ; (Jan. 2021)
  • Extent: 1 Online-Ressource (116 MB, 00:56:30:19)
  • Language: English
  • DOI: 10.5446/51297
  • Identifier:
  • Origination:
  • Footnote: Audiovisuelles Material
  • Description: After a brief introductory account, I’ll explain how a quasi-shuffle compatible definition (by no means unique) of multiple zeta values can be given for integer arguments of any sign, through Connes-Kreimer’s Hopf-algebraic renormalization. Finally, I’ll introduce the Ohno-Okuda-Zudilin model of q-analogues for multiple zeta values, describe the algebraic structure which governs it, and explain how it could open a way to the more delicate renormalization of shuffle relations
  • Access State: Open Access
  • Rights information: Attribution - Non Commercial (CC BY-NC)