• Media type: E-Article
  • Title: Wafer-scale fabrication of hierarchically porous silicon and silica by active nanoparticle-assisted chemical etching and pseudomorphic thermal oxidation
  • Contributor: Gries, Stella Inge Martha [VerfasserIn]; Brinker, Manuel [VerfasserIn]; Zeller-Plumhoff, Berit [VerfasserIn]; Rings, Dagmar [VerfasserIn]; Krekeler, Tobias [VerfasserIn]; Longo, Elena [VerfasserIn]; Greving, Imke [VerfasserIn]; Huber, Patrick [VerfasserIn]
  • Corporation: Technische Universität Hamburg ; Technische Universität Hamburg, Institute for Materials and X-Ray Physics ; Technische Universität Hamburg, Betriebseinheit Elektronenmikroskopie BEEM
  • imprint: 2023
  • Published in: Small ; 19(2023), 22, Artikel-ID 2206842, Seite 1-10
  • Language: English
  • DOI: 10.15480/882.5037; 10.1002/smll.202206842
  • ISSN: 1613-6829
  • Identifier:
  • Keywords: hierarchical porosity ; metal-assisted chemical etching ; porous silicon ; silica ; silver nanoparticles
  • Origination:
  • Footnote: Sonstige Körperschaften: Technische Universität Hamburg
    Sonstige Körperschaften: Technische Universität Hamburg, Institute for Materials and X-Ray Physics
    Sonstige Körperschaften: Technische Universität Hamburg, Betriebseinheit Elektronenmikroskopie BEEM
  • Description: Many biological materials exhibit a multiscale porosity with small, mostly nanoscale pores as well as large, macroscopic capillaries to simultaneously achieve optimized mass transport capabilities and lightweight structures with large inner surfaces. Realizing such a hierarchical porosity in artificial materials necessitates often sophisticated and expensive top-down processing that limits scalability. Here, an approach that combines self-organized porosity based on metal-assisted chemical etching (MACE) with photolithographically induced macroporosity for the synthesis of single-crystalline silicon with a bimodal pore-size distribution is presented, i.e., hexagonally arranged cylindrical macropores with 1 µm diameter separated by walls that are traversed by pores 60 nm across. The MACE process is mainly guided by a metal-catalyzed reduction–oxidation reaction, where silver nanoparticles (AgNPs) serve as the catalyst. In this process, the AgNPs act as self-propelled particles that are constantly removing silicon along their trajectories. High-resolution X-ray imaging and electron tomography reveal a resulting large open porosity and inner surface for potential applications in high-performance energy storage, harvesting and conversion or for on-chip sensorics and actuorics. Finally, the hierarchically porous silicon membranes can be transformed structure-conserving by thermal oxidation into hierarchically porous amorphous silica, a material that could be of particular interest for opto-fluidic and (bio-)photonic applications due to its multiscale artificial vascularization.
  • Access State: Open Access
  • Rights information: Attribution (CC BY)