• Media type: E-Book
  • Title: 3d Network Structured Bismuth-Based Silica Aerogel Fiber Felt for Highly Efficient Immobilization of Iodine
  • Contributor: Cao, Jiaxin [VerfasserIn]; Duan, Siyihan [VerfasserIn]; Zhao, Qian [VerfasserIn]; Chen, Guangyuan [VerfasserIn]; Wang, Zeru [VerfasserIn]; Liu, Ruixi [VerfasserIn]; Zhu, Lin [VerfasserIn]; Duan, Tao [VerfasserIn]
  • imprint: [S.l.]: SSRN, [2023]
  • Extent: 1 Online-Ressource (26 p)
  • Language: English
  • DOI: 10.2139/ssrn.4428932
  • Identifier:
  • Keywords: Bismuth-based ; Iodine ; Fiber felt ; adsorption ; immobilization
  • Origination:
  • Footnote:
  • Description: The effective capture and deposition of radioactive iodine in the spent fuel reprocessing process is of great importance for nuclear safety and environmental protection. 3D fiber felt with structural diversity and tunability is applied as an efficient adsorbent with easy separation for iodine capture. Here, a bismuth-based silica aerogel fiber felt (BiSNF) was synthesized using a facile hydrothermal method. Abundant and homogeneous Bi nanoparticles was greatly enhanced adsorption and immobilization of iodine. Notably, the Bi@SNF demonstrated a high capture capacity of 982.9 mg/g by forming stable BiI3 and Bi5O7I phase, which was about 14 times higher than that of the unloaded material. Fast uptake kinetics and excellent resistance to nitric acid and radiation were exhibited due to the 3D porous interconnected network and silica aerogel fiber substrate. Adjustable size and easy separation and recovery make the material potential as a radioactive iodine gas capture material
  • Access State: Open Access