Published:
[Erscheinungsort nicht ermittelbar]: Institut Fourier, 2017-01-01
Published in:Summer School 2017 - Arakelov Geometry and diophantine applications ; (Jan. 2017)
Extent:
1 Online-Ressource (2543 MB, 01:26:13:18)
Language:
English
DOI:
10.5446/63246
Identifier:
Origination:
Footnote:
Audiovisuelles Material
Description:
Let X be a 2-dimensional, normal, flat, proper scheme over the integers. Assume ¯L and ¯M are two hermitian line bundles over X. Arakelov (and Deligne) defined a real number ¯L.¯M, the arithmetic intersection number of ¯L and ¯M. We shall explain the definition and the basic properties of this number. Next, we shall see how to extend this construction to higher dimension, and how to interpret it in terms of arithmetic Chow groups