University thesis:
Dissertation, Universität Potsdam, 2024
Footnote:
Description:
The evaluation of process-oriented cognitive theories through time-ordered observations is crucial for the advancement of cognitive science. The findings presented herein integrate insights from research on eye-movement control and sentence comprehension during reading, addressing challenges in modeling time-ordered data, statistical inference, and interindividual variability. Using kernel density estimation and a pseudo-marginal likelihood for fixation durations and locations, a likelihood implementation of the SWIFT model of eye-movement control during reading (Engbert et al., Psychological Review, 112, 2005, pp. 777–813) is proposed. Within the broader framework of data assimilation, Bayesian parameter inference with adaptive Markov Chain Monte Carlo techniques is facilitated for reliable model fitting. Across the different studies, this framework has shown to enable reliable parameter recovery from simulated data and prediction of experimental summary statistics. Despite its complexity, SWIFT can be fitted within a principled ...