University thesis:
Freiberg (Sachsen), Techn. Univ. Bergakad., Diss., 2001
Footnote:
Systemvoraussetzungen: Acrobat reader
Description:
Es wird die Versuchsplanung für die Approximation zufälliger Funktionen untersucht, wobei sowohl deterministische Spline-, stochastisch-deterministische Krigingverfahren als auch Regressionsverfahren jeweils unter Verwendung von Ableitungssamples betrachtet werden. Dabei wird das mathematische Gerüst für den Beweis einer allgemeinen Äquivalenz zwischen Kriging- und Splineverfahren entwickelt. Für den in den praktischen Anwendungen wichtigen Fall der Verwendung endlich vieler nichthermitescher Samples wird ein Versuchsplanungsverfahren für zufällige Funktionen mit asymptotisch verschwindender Korrelation entwickelt. Ferner wird der Einfluß von Ableitungen auf die Varianz von (lokalen) Regressionsschätzern untersucht. Schließlich wird ein Verfahren zur Versuchsplanung vorgestellt, das durch Regularisierung mittels gestörter Kovarianzmatrizen Prinzipien der klassischen Versuchsplanung im korrelierten Fall nachahmt.