• Media type: E-Book
  • Title: Forecasting long memory time series under a break in persistence
  • Contributor: Heinen, Florian [Author]; Sibbertsen, Philipp [Author]; Kruse, Robinson [Author]
  • Published: Hannover: Wirtschaftswiss. Fak., Leibniz Univ., 2009
  • Published in: Universität Hannover: Diskussionspapiere der Wirtschaftswissenschaftlichen Fakultät ; 43300
  • Extent: Online-Ressource (29 S.); graph. Darst
  • Language: English
  • Identifier:
  • Keywords: Zeitreihenanalyse ; Strukturbruch ; Simulation ; Prognoseverfahren ; Arbeitspapier ; Graue Literatur
  • Origination:
  • Footnote: Systemvoraussetzungen: Acrobat Reader
  • Description: We consider the problem of forecasting time series with long memory when the memory parameter is subject to a structural break. By means of a large-scale Monte Carlo study we show that ignoring such a change in persistence leads to substantially reduced forecasting precision. The strength of this effect depends on whether the memory parameter is increasing or decreasing over time. A comparison of six forecasting strategies allows us to conclude that pre-testing for a change in persistence is highly recommendable in our setting. In addition we provide an empirical example which underlines the importance of our findings.
  • Access State: Open Access