University thesis:
Dresden, Techn. Univ., Fak. Informatik, Diss., 2014
Footnote:
Description:
...In der verfassten Dissertation wird ein Erkenner für planare, symbolische Gesten entwickelt, der über die Angabe von Templates trainiert werden kann und keine Beschränkung der Vielfalt von Eingaben auf berührungsempfindlichen Oberflächen voraussetzt. Um eine möglichst flexible Einsetzbarkeit zu gewährleisten, soll die Interpretation einer Geste unabhängig von natürlichen Varianzen - ihrer Translation, Skalierung, Rotation und Geschwindigkeit - und unter wenig spezifizierten Templates pro Klasse möglich sein. Weiterhin sind für Nutzerinteraktionen im Anwendungskontext übliche Echtzeit-Kriterien einzuhalten. Der vorgestellte Gestenerkenner basiert auf der Integration eines Nächste-Nachbar-Verfahrens in einen Ansatz der Bayes\'schen Klassifikation...
Information of inventory:
Elektronischer Volltext - Zugang über WWW