Contains:
Frontmatter -- -- Contents -- -- Preface -- -- Guide to the Reader -- -- Prologue -- -- I. Real-Variable Theory -- -- II. More about Maximal Functions -- -- III. Hardy Spaces -- -- IV. H -- -- V. Weighted Inequalities -- -- VI. Pseudo-Differential and Singular Integral Operators: Fourier Transform -- -- VII. Pseudo-Differential and Singular Integral Operators: Almost Orthogonality -- -- VIII. Oscillatory Integrals of the First Kind -- -- IX. Oscillatory Integrals of the Second Kind -- -- X. Maximal Operators: Some Examples -- -- XI. Maximal Averages and Oscillatory Integrals -- -- XII. Introduction to the Heisenberg Group -- -- XIII. More about the Heisenberg Group -- -- Bibliography -- -- Author Index -- -- Subject Index
Footnote:
In English
Mode of access: Internet via World Wide Web
Description:
This book contains an exposition of some of the main developments of the last twenty years in the following areas of harmonic analysis: singular integral and pseudo-differential operators, the theory of Hardy spaces, L\sup\ estimates involving oscillatory integrals and Fourier integral operators, relations of curvature to maximal inequalities, and connections with analysis on the Heisenberg group.