• Media type: Doctoral Thesis; E-Book; Habilitation Thesis; Electronic Thesis; Text
  • Title: Segmentierung medizinischer Bilddaten und bildgestützte intraoperative Navigation
  • Contributor: Egger, Jan [Author]
  • Published: Philipps-Universität Marburg, 2017
  • Language: German
  • DOI: https://doi.org/10.17192/es2017.0001
  • Keywords: medizini ; Segmentation ; Habilitationsschrift ; Segmentierung ; Data processing Computer science ; intraoperativ ; Navigation ; Informatik ; Medizinische Bildverarbeitung ; Bildsegmentierung ; bildgestützt
  • Origination:
  • Footnote: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Description: Die Entwicklung von Algorithmen zur automatischen oder semi-automatischen Verarbeitung von medizinischen Bilddaten hat in den letzten Jahren mehr und mehr an Bedeutung gewonnen. Das liegt zum einen an den immer besser werdenden medizinischen Aufnahmemodalitäten, die den menschlichen Körper immer feiner virtuell abbilden können. Zum anderen liegt dies an der verbesserten Computerhardware, die eine algorithmische Verarbeitung der teilweise im Gigabyte-Bereich liegenden Datenmengen in einer vernünftigen Zeit erlaubt. Das Ziel dieser Habilitationsschrift ist die Entwicklung und Evaluation von Algorithmen für die medizinische Bildverarbeitung. Insgesamt besteht die Habilitationsschrift aus einer Reihe von Publikationen, die in drei übergreifende Themenbereiche gegliedert sind: -Segmentierung medizinischer Bilddaten anhand von vorlagenbasierten Algorithmen -Experimentelle Evaluation quelloffener Segmentierungsmethoden unter medizinischen Einsatzbedingungen -Navigation zur Unterstützung intraoperativer Therapien Im Bereich Segmentierung medizinischer Bilddaten anhand von vorlagenbasierten Algorithmen wurden verschiedene graphbasierte Algorithmen in 2D und 3D entwickelt, die einen gerichteten Graphen mittels einer Vorlage aufbauen. Dazu gehört die Bildung eines Algorithmus zur Segmentierung von Wirbeln in 2D und 3D. In 2D wird eine rechteckige und in 3D eine würfelförmige Vorlage genutzt, um den Graphen aufzubauen und das Segmentierungsergebnis zu berechnen. Außerdem wird eine graphbasierte Segmentierung von Prostatadrüsen durch eine Kugelvorlage zur automatischen Bestimmung der Grenzen zwischen Prostatadrüsen und umliegenden Organen vorgestellt. Auf den vorlagenbasierten Algorithmen aufbauend, wurde ein interaktiver Segmentierungsalgorithmus, der einem Benutzer in Echtzeit das Segmentierungsergebnis anzeigt, konzipiert und implementiert. Der Algorithmus nutzt zur Segmentierung die verschiedenen Vorlagen, benötigt allerdings nur einen Saatpunkt des Benutzers. In einem weiteren Ansatz kann der Benutzer die Segmentierung ...
  • Access State: Open Access
  • Rights information: Attribution - Non Commercial - Share Alike (CC BY-NC-SA)