• Media type: Text; E-Article
  • Title: Uncertainty visualization : Fundamentals and recent developments
  • Contributor: Hägele, David [Author]; Schulz, Christoph [Author]; Beschle, Cedric [Author]; Booth, Hannah [Author]; Butt, Miriam [Author]; Barth, Andrea [Author]; Deussen, Oliver [Author]; Weiskopf, Daniel [Author]
  • Published: KOPS - The Institutional Repository of the University of Konstanz, 2022-08-31
  • Published in: it - Information Technology. De Gruyter Oldenbourg. 2022, 64(4-5), pp. 121-132. ISSN 1611-2776. eISSN 2196-7032. Available under: doi:10.1515/itit-2022-0033
  • Language: English
  • DOI: https://doi.org/10.1515/itit-2022-0033
  • ISBN: 1828115614
  • Origination:
  • Footnote: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Description: This paper provides a brief overview of uncertainty visualization along with some fundamental considerations on uncertainty propagation and modeling. Starting from the visualization pipeline, we discuss how the different stages along this pipeline can be affected by uncertainty and how they can deal with this and propagate uncertainty information to subsequent processing steps. We illustrate recent advances in the field with a number of examples from a wide range of applications: uncertainty visualization of hierarchical data, multivariate time series, stochastic partial differential equations, and data from linguistic annotation. ; published
  • Access State: Open Access
  • Rights information: In Copyright