> Details
Heinze, Rieke
[Author];
Dipankar, Anurag
[Author];
Henken, Cintia Carbajal
[Author];
Moseley, Christopher
[Author];
Sourdeval, Odran
[Author];
Trömel, Silke
[Author];
Xie, Xinxin
[Author];
Adamidis, Panos
[Author];
Ament, Felix
[Author];
Baars, Holger
[Author];
Barthlott, Christian
[Author];
Behrendt, Andreas
[Author];
Blahak, Ulrich
[Author];
Bley, Sebastian
[Author];
Brdar, Slavko
[Author];
Brueck, Matthias
[Author];
Crewell, Susanne
[Author];
Deneke, Hartwig
[Author];
Di Girolamo, Paolo
[Author];
Evaristo, Raquel
[Author];
Fischer, Jürgen
[Author];
Frank, Christopher
[Author];
Friederichs, Petra
[Author];
Göcke, Tobias
[Author];
[...]
Large-eddy simulations over Germany using ICON: a comprehensive evaluation
- [published Version]
Sharing
Reference
management
Direct link
Bookmarks
Remove from
bookmarks
Share this by email
Share this on Twitter
Share this on Facebook
Share this on Whatsapp
- Media type: Text; E-Article
- Title: Large-eddy simulations over Germany using ICON: a comprehensive evaluation
- Contributor: Heinze, Rieke [Author]; Dipankar, Anurag [Author]; Henken, Cintia Carbajal [Author]; Moseley, Christopher [Author]; Sourdeval, Odran [Author]; Trömel, Silke [Author]; Xie, Xinxin [Author]; Adamidis, Panos [Author]; Ament, Felix [Author]; Baars, Holger [Author]; Barthlott, Christian [Author]; Behrendt, Andreas [Author]; Blahak, Ulrich [Author]; Bley, Sebastian [Author]; Brdar, Slavko [Author]; Brueck, Matthias [Author]; Crewell, Susanne [Author]; Deneke, Hartwig [Author]; Di Girolamo, Paolo [Author]; Evaristo, Raquel [Author]; Fischer, Jürgen [Author]; Frank, Christopher [Author]; Friederichs, Petra [Author]; Göcke, Tobias [Author]; [...]
-
Published:
Chichester : John Wiley and Sons Ltd, 2017
- Published in: Quarterly Journal of the Royal Meteorological Society 143 (2017), Nr. 702
- Issue: published Version
- Language: English
- DOI: https://doi.org/10.15488/1272; https://doi.org/10.1002/qj.2947
- ISSN: 0035-9009
- Keywords: Development and applications ; large-eddy simulation ; Atmospheric thermodynamics ; clouds and precipitation ; High-resolution models ; Weather forecasting ; Satellite observations ; Precipitation (meteorology) ; Boundary layers ; Comprehensive evaluation ; Numerical weather prediction models ; Turbulence ; Ice cloud microphysics ; Large eddy simulation ; evaluation with observations ; Mesoscale variability ; Climate models ; Clouds
- Origination:
-
Footnote:
Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
- Description: Large-eddy simulations (LES) with the new ICOsahedral Non-hydrostatic atmosphere model (ICON) covering Germany are evaluated for four days in spring 2013 using observational data from various sources. Reference simulations with the established Consortium for Small-scale Modelling (COSMO) numerical weather prediction model and further standard LES codes are performed and used as a reference. This comprehensive evaluation approach covers multiple parameters and scales, focusing on boundary-layer variables, clouds and precipitation. The evaluation points to the need to work on parametrizations influencing the surface energy balance, and possibly on ice cloud microphysics. The central purpose for the development and application of ICON in the LES configuration is the use of simulation results to improve the understanding of moist processes, as well as their parametrization in climate models. The evaluation thus aims at building confidence in the model's ability to simulate small- to mesoscale variability in turbulence, clouds and precipitation. The results are encouraging: the high-resolution model matches the observed variability much better at small- to mesoscales than the coarser resolved reference model. In its highest grid resolution, the simulated turbulence profiles are realistic and column water vapour matches the observed temporal variability at short time-scales. Despite being somewhat too large and too frequent, small cumulus clouds are well represented in comparison with satellite data, as is the shape of the cloud size spectrum. Variability of cloud water matches the satellite observations much better in ICON than in the reference model. In this sense, it is concluded that the model is fit for the purpose of using its output for parametrization development, despite the potential to improve further some important aspects of processes that are also parametrized in the high-resolution model. ; BMBF/HD(CP)2
- Access State: Open Access
- Rights information: Attribution (CC BY)