Footnote:
Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
Description:
Team semantics is an extension of classical logic where statements do not refer to single states of a system, but instead to sets of such states, called teams. This kind of semantics has applications for example in mathematical logic, verification of dynamic systems as well as in database theory. In this thesis, we focus on the propositional, modal and first-order variant of team logic. We study the classical questions of formal logic: Expressiveness (can we formalize sufficiently interesting properties of models?), axiomatizability (can all true statements be deduced in some formal system?) and complexity (can problems such as satisfiability and model checking be solved algorithmically?). Finally, we classify existing team logics and show approaches how team semantics can be defined for arbitrary other logics. ; Team-Semantik ist eine Erweiterung klassischer Logik, bei der Aussagen nicht über einzelne Zustände eines Systems getroffen werden, sondern über Mengen solcher Zustände, genannt Teams. Diese Art von Semantik besitzt unter anderem Anwendungen in der mathematischen Logik, in der Verifikation dynamischer Systeme sowie in der Datenbanktheorie. In dieser Arbeit liegt der Fokus auf der aussagenlogischen, der modallogischen und der prädikatenlogischen Variante der Team-Logik. Es werden die klassischen Fragestellungen formaler Logik untersucht: Ausdruckskraft (können hinreichend interessante Eigenschaften von Modellen formalisiert werden?), Axiomatisierbarkeit (lassen sich alle wahren Aussagen in einem Kalkül ableiten?) und Komplexität (können Probleme wie Erfüllbarkeit und Modellprüfung algorithmisch gelöst werden?). Schlussendlich werden existierende Team-Logiken klassifiziert und es werden Ansätze aufgezeigt, wie Team-Semantik für beliebige weitere Logiken definiert werden kann.