• Media type: Doctoral Thesis; Electronic Thesis; E-Book
  • Title: On Lacunary Approximation of Mergelyan Type
  • Contributor: Born, Markus [Author]
  • Published: Publication Server of Tier University (OPUS), 2022-09-19
  • Language: English
  • DOI: https://doi.org/10.25353/ubtr-xxxx-6536-dc72
  • Keywords: Mathematik ; Approximationstheorie
  • Origination:
  • Footnote: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Description: Let K be a compact subset of the complex plane. Then the family of polynomials P is dense in A(K), the space of all continuous functions on K that are holomorphic on the interior of K, endowed with the uniform norm, if and only if the complement of K is connected. This is the statement of Mergelyan's celebrated theorem. There are, however, situations where not all polynomials are required to approximate every f ϵ A(K) but where there are strict subspaces of P that are still dense in A(K). If, for example, K is a singleton, then the subspace of all constant polynomials is dense in A(K). On the other hand, if 0 is an interior point of K, then no strict subspace of P can be dense in A(K). In between these extreme cases, the situation is much more complicated. It turns out that it is mostly determined by the geometry of K and its location in the complex plane which subspaces of P are dense in A(K). In Chapter 1, we give an overview of the known results. Our first main theorem, which we will give in Chapter 3, deals with the case where the origin is not an interior point of K. We will show that if K is a compact set with connected complement and if 0 is not an interior point of K, then any subspace Q ⊂ P which contains the constant functions and all but finitely many monomials is dense in A(K). There is a close connection between lacunary approximation and the theory of universality. At the end of Chapter 3, we will illustrate this connection by applying the above result to prove the existence of certain universal power series. To be specific, if K is a compact set with connected complement, if 0 is a boundary point of K and if A_0(K) denotes the subspace of A(K) of those functions that satisfy f(0) = 0, then there exists an A_0(K)-universal formal power series s, where A_0(K)-universal means that the family of partial sums of s forms a dense subset of A_0(K). In addition, we will show that no formal power series is simultaneously universal for all such K. The condition on the subspace Q in the main result of Chapter ...
  • Access State: Open Access