• Media type: E-Article; Text
  • Title: Determination of stiffness and higher gradient coefficients by means of the embedded-atom method
  • Contributor: Böhme, Thomas [Author]; Müller, Wolfgang H. [Author]; Dreyer, Wolfgang [Author]
  • imprint: Weierstrass Institute for Applied Analysis and Stochastics publication server, 2006
  • Language: English
  • DOI: https://doi.org/10.1007/s00161-006-0037-2
  • ISSN: 0935-1175
  • Keywords: atomic potentials -- crystals -- elastic constants -- higher gradient coefficients -- phase diagram -- diffusion -- phase transformation -- phase field theories ; article
  • Origination:
  • Footnote: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Description: For a quantitative theoretical description of phase separation and coarsening reliable data of stiffness constants and for the so-called higher gradient coefficients (HGCs) are required. For that reason pair potentials of the Lennard–Jones type were used in the past to provide a theoretical tool for their quantitative determination. Following up on this work these quantities are now calculated by means of the embedded-atom method (EAM), a recently developed approach to describe interatomic potentials in metals. This is done, first, to achieve a better agreement between predicted and experimentally observed stiffness data as well as to avoid artifacts, such as the Cauchy paradox, and, second, to increase the trustworthiness of the HGCs for which experimental data are rarely available. After an introduction to the fundamentals of EAM it is outlined how it can be used for calculating stiffness constants and HGCs. In particular, Johnson’s modification of EAM for nearest-neighbor interactions is applied and explicit numerical results for a case study alloy, Ag–Cu, which has a simple face-centered-cubic crystal structure, are presented. In this particular case it is comparatively easy to obtain all the required analysis data from the literature and to compare the predictions of mechanical data with experimental values.