You can manage bookmarks using lists, please log in to your user account for this.
Media type:
Electronic Conference Proceeding
Title:
Crash test using a car with automatic pre-crash braking
Contributor:
Berg, Alexander
[Author];
Rücker, Peter
[Author];
Domsch, Christian
[Author]
Published:
German Federal Highway Research Institute (BASt): Electronic BASt Archive (ELBA), 2013-09-05
Language:
English
Origination:
Footnote:
Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
Description:
The utilisation of secondary-safety systems to protect occupants has attained a very high level over the past decades. Further improvements are still possible, but increasingly minor progress is only to be had with a high degree of effort. Thus, a key aspect must be the impact to overall safety in an accident. If reliable information is available on an imminent crash, measures already taken in the pre-crash phase can result in a significantly great influence on the outcomes of the crash. With this background preventive measures are the key to a sustainable further reduction of the figures of crash victims on our roads. This paper aims to show a preventive approach that can contribute to lessening the consequences of a crash by creating an optimum interaction of measures in the fields of primary and secondary safety. To further enhance vehicle safety, driver assistant systems are already available that warn the driver of an imminent front-to-rear-end crash. The next step is to support him in his reactions or if he fails to react sufficiently, to even initiate an automatic braking when the crash becomes unavoidable. Automatic pre-crash braking can, in an ideal situation, fully prevent a crash or can significantly reduce the impact speed and thus the impact energy (and the severity of the accident). If a vehicle is being braked in the pre-crash phase, the occupants are already being pre-stressed by the deceleration. The information available about the imminent crash can be used to activate the belt tensioners and likewise other secondary safety systems in the vehicle right before the impact. The pre-crash deceleration also causes the front of the vehicle to dip. Conventional crash tests do not take this specific impact situation into consideration. This is why, for example, the influences of the pre-crash displacements of the occupants are not recorded in the test results. Furthermore, a reproducible representation of the benefit of the vehicle safety systems which prepare the occupants for the imminent impact is ...