• Media type: Text; E-Article; Electronic Conference Proceeding
  • Title: A Job Dispatcher for Large and Heterogeneous HPC Systems Running Modern Applications
  • Contributor: Galleguillos, Cristian [Author]; Kiziltan, Zeynep [Author]; Soto, Ricardo [Author]
  • Published: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021
  • Language: English
  • DOI: https://doi.org/10.4230/LIPIcs.CP.2021.26
  • Keywords: Constraint programming ; large systems ; heterogeneous systems ; on-line job dispatching ; resource allocation ; HPC systems
  • Origination:
  • Footnote: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Description: High-performance Computing (HPC) systems have become essential instruments in our modern society. As they get closer to exascale performance, HPC systems become larger in size and more heterogeneous in their computing resources. With recent advances in AI, HPC systems are also increasingly being used for applications that employ many short jobs with strict timing requirements. HPC job dispatchers need to therefore adopt techniques to go beyond the capabilities of those developed for small or homogeneous systems, or for traditional compute-intensive applications. In this paper, we present a job dispatcher suitable for today’s large and heterogeneous systems running modern applications. Unlike its predecessors, our dispatcher solves the entire dispatching problem using Constraint Programming (CP) with a model size independent of the system size. Experimental results based on a simulation study show that our approach can bring about significant performance gains over the existing CP-based dispatchers in a large or heterogeneous system.
  • Access State: Open Access