• Media type: Text; E-Article; Electronic Conference Proceeding
  • Title: Linear-Time Approximation Scheme for k-Means Clustering of Axis-Parallel Affine Subspaces
  • Contributor: Cho, Kyungjin [Author]; Oh, Eunjin [Author]
  • Published: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021
  • Language: English
  • DOI: https://doi.org/10.4230/LIPIcs.ISAAC.2021.46
  • Keywords: k-means clustering ; affine subspaces
  • Origination:
  • Footnote: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Description: In this paper, we present a linear-time approximation scheme for k-means clustering of incomplete data points in d-dimensional Euclidean space. An incomplete data point with Δ > 0 unspecified entries is represented as an axis-parallel affine subspace of dimension Δ. The distance between two incomplete data points is defined as the Euclidean distance between two closest points in the axis-parallel affine subspaces corresponding to the data points. We present an algorithm for k-means clustering of axis-parallel affine subspaces of dimension Δ that yields an (1+ε)-approximate solution in O(nd) time. The constants hidden behind O(⋅) depend only on Δ, ε and k. This improves the O(n² d)-time algorithm by Eiben et al. [SODA'21] by a factor of n.
  • Access State: Open Access