• Media type: Text; E-Article; Electronic Conference Proceeding
  • Title: Improved Hardness of BDD and SVP Under Gap-(S)ETH
  • Contributor: Bennett, Huck [Author]; Peikert, Chris [Author]; Tang, Yi [Author]
  • imprint: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022
  • Language: English
  • DOI: https://doi.org/10.4230/LIPIcs.ITCS.2022.19
  • Keywords: fine-grained complexity ; Shortest Vector Problem ; lattice-based cryptography ; Bounded Distance Decoding ; lattices
  • Origination:
  • Footnote: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Description: We show improved fine-grained hardness of two key lattice problems in the 𝓁_p norm: Bounded Distance Decoding to within an α factor of the minimum distance (BDD_{p, α}) and the (decisional) γ-approximate Shortest Vector Problem (GapSVP_{p,γ}), assuming variants of the Gap (Strong) Exponential Time Hypothesis (Gap-(S)ETH). Specifically, we show: 1) For all p ∈ [1, ∞), there is no 2^{o(n)}-time algorithm for BDD_{p, α} for any constant α > α_kn, where α_kn = 2^{-c_kn} < 0.98491 and c_kn is the 𝓁₂ kissing-number constant, unless non-uniform Gap-ETH is false. 2) For all p ∈ [1, ∞), there is no 2^{o(n)}-time algorithm for BDD_{p, α} for any constant α > α^‡_p, where α^‡_p is explicit and satisfies α^‡_p = 1 for 1 ≤ p ≤ 2, α^‡_p < 1 for all p > 2, and α^‡_p → 1/2 as p → ∞, unless randomized Gap-ETH is false. 3) For all p ∈ [1, ∞) ⧵ 2 ℤ and all C > 1, there is no 2^{n/C}-time algorithm for BDD_{p, α} for any constant α > α^†_{p, C}, where α^†_{p, C} is explicit and satisfies α^†_{p, C} → 1 as C → ∞ for any fixed p ∈ [1, ∞), unless non-uniform Gap-SETH is false. 4) For all p > p₀ ≈ 2.1397, p ∉ 2ℤ, and all C > C_p, there is no 2^{n/C}-time algorithm for GapSVP_{p, γ} for some constant γ > 1, where C_p > 1 is explicit and satisfies C_p → 1 as p → ∞, unless randomized Gap-SETH is false. Our results for BDD_{p, α} improve and extend work by Aggarwal and Stephens-Davidowitz (STOC, 2018) and Bennett and Peikert (CCC, 2020). Specifically, the quantities α_kn and α^‡_p (respectively, α^†_{p,C}) significantly improve upon the corresponding quantity α_p^* (respectively, α_{p,C}^*) of Bennett and Peikert for small p (but arise from somewhat stronger assumptions). In particular, Item 1 improves the smallest value of α for which BDD_{p, α} is known to be exponentially hard in the Euclidean norm (p = 2) to an explicit constant α < 1 for the first time under a general-purpose complexity assumption. Items 1 and 3 crucially use the recent breakthrough result of Vlăduţ (Moscow Journal of Combinatorics ...
  • Access State: Open Access