• Media type: Text; E-Article; Electronic Conference Proceeding
  • Title: Determining a Slater Winner Is Complete for Parallel Access to NP
  • Contributor: Lampis, Michael [Author]
  • Published: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022
  • Language: English
  • DOI: https://doi.org/10.4230/LIPIcs.STACS.2022.45
  • Keywords: Slater winner ; Tournaments ; Feedback Arc Set
  • Origination:
  • Footnote: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Description: We consider the complexity of deciding the winner of an election under the Slater rule. In this setting we are given a tournament T = (V,A), where the vertices of V represent candidates and the direction of each arc indicates which of the two endpoints is preferable for the majority of voters. The Slater score of a vertex v ∈ V is defined as the minimum number of arcs that need to be reversed so that T becomes acyclic and v becomes the winner. We say that v is a Slater winner in T if v has minimum Slater score in T. Deciding if a vertex is a Slater winner in a tournament has long been known to be NP-hard. However, the best known complexity upper bound for this problem is the class Θ₂^p, which corresponds to polynomial-time Turing machines with parallel access to an NP oracle. In this paper we close this gap by showing that the problem is Θ₂^p-complete, and that this hardness applies to instances constructible by aggregating the preferences of 7 voters.
  • Access State: Open Access