• Media type: Text; Electronic Conference Proceeding; E-Article
  • Title: Improved Pseudorandom Generators for AC⁰ Circuits
  • Contributor: Lyu, Xin [Author]
  • imprint: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022
  • Language: English
  • DOI: https://doi.org/10.4230/LIPIcs.CCC.2022.34
  • Keywords: switching Lemmas ; AC⁰ ; derandomization ; pseudorandom generators
  • Origination:
  • Footnote: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Description: We give PRG for depth-d, size-m AC⁰ circuits with seed length O(log^{d-1}(m)log(m/ε)log log(m)). Our PRG improves on previous work [Luca Trevisan and Tongke Xue, 2013; Rocco A. Servedio and Li-Yang Tan, 2019; Zander Kelley, 2021] from various aspects. It has optimal dependence on 1/ε and is only one "log log(m)" away from the lower bound barrier. For the case of d = 2, the seed length tightly matches the best-known PRG for CNFs [Anindya De et al., 2010; Avishay Tal, 2017]. There are two technical ingredients behind our new result; both of them might be of independent interest. First, we use a partitioning-based approach to construct PRGs based on restriction lemmas for AC⁰. Previous works [Luca Trevisan and Tongke Xue, 2013; Rocco A. Servedio and Li-Yang Tan, 2019; Zander Kelley, 2021] usually built PRGs on the Ajtai-Wigderson framework [Miklós Ajtai and Avi Wigderson, 1989]. Compared with them, the partitioning approach avoids the extra "log(n)" factor that usually arises from the Ajtai-Wigderson framework, allowing us to get the almost-tight seed length. The partitioning approach is quite general, and we believe it can help design PRGs for classes beyond constant-depth circuits. Second, improving and extending [Luca Trevisan and Tongke Xue, 2013; Rocco A. Servedio and Li-Yang Tan, 2019; Zander Kelley, 2021], we prove a full derandomization of the powerful multi-switching lemma [Johan Håstad, 2014]. We show that one can use a short random seed to sample a restriction, such that a family of DNFs simultaneously simplifies under the restriction with high probability. This answers an open question in [Zander Kelley, 2021]. Previous derandomizations were either partial (that is, they pseudorandomly choose variables to restrict, and then fix those variables to truly-random bits) or had sub-optimal seed length. In our application, having a fully-derandomized switching lemma is crucial, and the randomness-efficiency of our derandomization allows us to get an almost-tight seed length.
  • Access State: Open Access