• Media type: Text; E-Article; Electronic Conference Proceeding
  • Title: QMusExt: A Minimal (Un)satisfiable Core Extractor for Quantified Boolean Formulas
  • Contributor: Plank, Andreas [Author]; Seidl, Martina [Author]
  • Published: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023
  • Language: English
  • DOI: https://doi.org/10.4230/LIPIcs.SAT.2023.20
  • Keywords: Quantified Boolean Formula ; Minimal Unsatisfiable Core
  • Origination:
  • Footnote: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Description: In this paper, we present QMusExt, a tool for the extraction of minimal unsatisfiable sets (MUS) from quantified Boolean formulas (QBFs) in prenex conjunctive normal form (PCNF). Our tool generalizes an efficient algorithm for MUS extraction from propositional formulas that analyses and rewrites resolution proofs generated by SAT solvers. In addition to extracting unsatisfiable cores from false formulas in PCNF, we apply QMusExt also to obtain satisfiable cores from Q-resolution proofs of true formulas in prenex disjunctive normal form (PDNF).
  • Access State: Open Access