• Media type: Electronic Conference Proceeding; Text; E-Article
  • Title: Solving Irreducible Stochastic Mean-Payoff Games and Entropy Games by Relative Krasnoselskii-Mann Iteration
  • Contributor: Akian, Marianne [Author]; Gaubert, Stéphane [Author]; Naepels, Ulysse [Author]; Terver, Basile [Author]
  • Published: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023
  • Language: English
  • DOI: https://doi.org/10.4230/LIPIcs.MFCS.2023.10
  • Keywords: Hilbert projective metric ; relative value iteration ; Krasnoselskii-Mann fixed point algorithm ; concurrent games ; Stochastic mean-payoff games ; entropy games
  • Origination:
  • Footnote: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Description: We analyse an algorithm solving stochastic mean-payoff games, combining the ideas of relative value iteration and of Krasnoselskii-Mann damping. We derive parameterized complexity bounds for several classes of games satisfying irreducibility conditions. We show in particular that an ε-approximation of the value of an irreducible concurrent stochastic game can be computed in a number of iterations in O(|log(ε)|) where the constant in the O(⋅) is explicit, depending on the smallest non-zero transition probabilities. This should be compared with a bound in O(ε^{-1}|log(ε)|) obtained by Chatterjee and Ibsen-Jensen (ICALP 2014) for the same class of games, and to a O(ε^{-1}) bound by Allamigeon, Gaubert, Katz and Skomra (ICALP 2022) for turn-based games. We also establish parameterized complexity bounds for entropy games, a class of matrix multiplication games introduced by Asarin, Cervelle, Degorre, Dima, Horn and Kozyakin. We derive these results by methods of variational analysis, establishing contraction properties of the relative Krasnoselskii-Mann iteration with respect to Hilbert’s semi-norm.
  • Access State: Open Access