• Media type: Text; E-Article; Electronic Conference Proceeding
  • Title: A Decomposition Framework for Inconsistency Handling in Qualitative Spatial and Temporal Reasoning (Extended Abstract)
  • Contributor: Salhi, Yakoub [Author]; Sioutis, Michael [Author]
  • Published: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023
  • Language: English
  • DOI: https://doi.org/10.4230/LIPIcs.TIME.2023.16
  • Keywords: Inconsistency Handling ; Inconsistency Measures ; Spatial and Temporal Reasoning ; Decomposition ; Qualitative Constraints
  • Origination:
  • Footnote: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Description: Dealing with inconsistency is a central problem in AI, due to the fact that inconsistency can arise for many reasons in real-world applications, such as context dependency, multi-source information, vagueness, noisy data, etc. Among the approaches that are involved in inconsistency handling, we can mention argumentation, non-monotonic reasoning, and paraconsistency, e.g., see [Philippe Besnard and Anthony Hunter, 2008; Gerhard Brewka et al., 1997; Koji Tanaka et al., 2013]. In the work of [Yakoub Salhi and Michael Sioutis, 2023], we are interested in dealing with inconsistency in the context of Qualitative Spatio-Temporal Reasoning (QSTR) [Ligozat, 2013]. QSTR is an AI framework that aims to mimic, natural, human-like representation and reasoning regarding space and time. This framework is applied to a variety of domains, such as qualitative case-based reasoning and learning [Thiago Pedro Donadon Homem et al., 2020] and visual sensemaking [Jakob Suchan et al., 2021]; the interested reader is referred to [Michael Sioutis and Diedrich Wolter, 2021] for a recent survey. Motivation. In [Yakoub Salhi and Michael Sioutis, 2023], we study the decomposition of an inconsistent constraint network into consistent subnetworks under, possible, mandatory constraints. To illustrate the interest of such a decomposition, we provide a simple example described in Figure 1. The QCN depicted in the top part of the figure corresponds to a description of an inconsistent plan. Further, we assume that the constraint Task A {before} Task B is mandatory. To handle inconsistency, this plan can be transformed into a decomposition of two consistent plans, depicted in the bottom part of the figure; this decomposition can be used, e.g., to capture the fact that Task C must be performed twice. More generally, network decomposition can be involved in inconsistency handling in several ways: it can be used to identify potential contexts that explain the presence of inconsistent information; it can also be used to restore consistency through a ...
  • Access State: Open Access