• Media type: Text; E-Article; Electronic Conference Proceeding
  • Title: Preprocessing Ambiguous Imprecise Points
  • Contributor: van der Hoog, Ivor [Author]; Kostitsyna, Irina [Author]; Löffler, Maarten [Author]; Speckmann, Bettina [Author]
  • Published: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019
  • Language: English
  • DOI: https://doi.org/10.4230/LIPIcs.SoCG.2019.42
  • Keywords: preprocessing ; imprecise points ; proximity structures ; entropy ; sorting
  • Origination:
  • Footnote: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Description: Let R = {R_1, R_2, ., R_n} be a set of regions and let X = {x_1, x_2, ., x_n} be an (unknown) point set with x_i in R_i. Region R_i represents the uncertainty region of x_i. We consider the following question: how fast can we establish order if we are allowed to preprocess the regions in R? The preprocessing model of uncertainty uses two consecutive phases: a preprocessing phase which has access only to R followed by a reconstruction phase during which a desired structure on X is computed. Recent results in this model parametrize the reconstruction time by the ply of R, which is the maximum overlap between the regions in R. We introduce the ambiguity A(R) as a more fine-grained measure of the degree of overlap in R. We show how to preprocess a set of d-dimensional disks in O(n log n) time such that we can sort X (if d=1) and reconstruct a quadtree on X (if d >= 1 but constant) in O(A(R)) time. If A(R) is sub-linear, then reporting the result dominates the running time of the reconstruction phase. However, we can still return a suitable data structure representing the result in O(A(R)) time. In one dimension, {R} is a set of intervals and the ambiguity is linked to interval entropy, which in turn relates to the well-studied problem of sorting under partial information. The number of comparisons necessary to find the linear order underlying a poset P is lower-bounded by the graph entropy of P. We show that if P is an interval order, then the ambiguity provides a constant-factor approximation of the graph entropy. This gives a lower bound of Omega(A(R)) in all dimensions for the reconstruction phase (sorting or any proximity structure), independent of any preprocessing; hence our result is tight. Finally, our results imply that one can approximate the entropy of interval graphs in O(n log n) time, improving the O(n^{2.5}) bound by Cardinal et al.
  • Access State: Open Access